

Vhost dataplane in Qemu

Jason Wang
Red Hat

Agenda

● History & Evolution of vhost
● Issues
● Vhost dataplane
● TODO

Userspace Qemu networking

Qemu Guest

TAP

VCPU
mainloop in
IOThread VCPU

KVM

userspace
kernel

vcpu fdtap fd

ioexit/interrupt

virtio

vcpu fd

OVS

eth0

NIC

Userspace qemu networking is slow

● Limitation of both qemu and backend
– Run inside mainloop

● No real multiqueue
● No dedicated thread, No busy polling

– Extra data copy to internal buffer
– TAP

● syscall to send/receive message

– IRQ/ioexit is slow
● VCPU needs to be blocked
● Slow path

– No burst/bulking

Vhost kernel

qemu

vhost-net

vcpu

ioctl()/read()/write()

kick(ioeventfd) notify(irqfd)

TAP
ioctl()

sendmsg() recvmsg()

virtio
userspace
kernel

OVS

eth0

NIC

eBPF

vhost-net

Vhost user

 AF_UNIX

virtio

mmap()

vcpuqemu

irqfd

ioeventfd

userspace
kernel

NIC

VFIO

IOMMU

Vhost OVS DRV

ioctl()
IOMMU

DRV

VHost

● Offload dataplane to another process
– kthread or userspace process

● A set of API that did
– Features Negotiation
– MEM Table
– Dirty page logging
– Virtqueues setting
– Endianess
– Device specific

● An API transport
– ioctl()
– AF_UNIX

So far so good?

How hard for adding a new feature

● Formalization in Virtio Specification
● Codes in qemu userspace virtio-net

backend
● Vhost protocol extension:

● Vhost-kernel (uapi), vhost-user (has its own spec)
● Versions, feature negotiations, compatibility

● Vhost support codes in qemu (user and
kernel)

● Features (bugs) duplicated everywhere:
– vhost_net, dpdk, TAP, macvtap, OVS, VPP, qemu

Even if we manage to do this

Device IOTLB

qemu

vIOMMU

vhost backend

Device
IOTLB

IOTLB miss

IOTLB update

slow or even unreliable
Minor impact for static mapping
Poor performance for dynamic mapping

Issue

Datapath needs information from control
path. But vhost control path is not designed
for high performance.

q1

q1

vhost-user slave

vhost

RSS

Receive Side Scaling

qemu

VCPU0 VCPU1 VCPU2 VCPU3

Indirection table?

2

q2

cvq MSI-X

q2

Network backend

algo

 AF_UNIX

More kinds of steering policy?

Issue

Networking backend is transparent to qemu
in the case of vhost-user. Net specific request
through vhost-user.

Migration compatibility

vhost backend
with EVENT_IDX

qemu

vhost backend
without EVENT_IDX

Guest

qemu

Guest

Host 1 Host 2

migrate

Issue

Though features was negotiated during
startup. Backend needs to implement each
features for providing migration compatibility.

Attack surface

qemu

vIOMMU

vhost backend

Device
IOTLB

ATS request
ATS reply

guest

kernel

rw
rw
rw

MEM_TABLE

can protect malicious guest usersapce driver.
but not malicious vhost-backend.

malicious
code

untrusted
userspace drv

VFIO

IOMMU DRV

#DMARF

iova

Issue

We don’t want to trust vhost-user backend
But we share (almost) all memory to it!

Issues with external vhost process

● Complexity in Engineering
– Hard to be extended, duplicated codes(bugs) in many

places

● Performance is not always good
– Datapath can not be offloaded completely

● Visibility of networking backend
– Re-invent wheels in vhost-user procotol

● Divergence of protocol between vhost-kernel
and vhost-user
– Workarounds, how to deal with the 3rd vhost transport?

● Increasing of attack surface

Vhost dataplane =
Vhost through qemu IOThread

● Vhost IOThreads
– Datapath in vhost IOThread

● Hide VM state from backends
● Function call for state

accessing, better vIOMMU
● Decouple vitio out of backends

– Full functional features
through control vq

– Fast address translation
(vhost memory table)

– Copy inside qemu

– Drivers for various backends

– Multiqueue

Qemu

vcpu
Thread

main
Thread

virtiovirtio

Guest

vhost
 IOthread

net
backend

vhost
 IOthread

Vhost dataplane

vhost dataplane API

vhost protocol
virtqueue

manipulation
helpers *

IOThreads

netmap dpdk
AF_XDP/

AF_PACKET

mdev/zerocopy virtio-user
shared
memory

vhost_net/
TAP

...

Drivers

Qemu - Vhost
IOThread

Inline driver

kernel

virtio

userspace
driver

NIC

Guest

vhost

Qemu

KVMVFIO KVM

IOMMU

iothread

vcpu
thread

vIOMMU

virtio-net
 drv

Vhost dataplane

virtio

Dpdk pmd
Mdev
...

OVS-dpdk

Multi-process cooperation

virtio

Guest

vhost

Qemu

iothread

vcpu
thread

vIOMMU

virtio-net
 drv

Vhost dataplane

port

port

rte_ring

ring pmd

mempool

Vhost friendly networking backend

● Generic inline networking functions:
● TX/RX, Multiqueue, QOS, GSO, steering …

● Secure and efficient IPC
– No knowledge of virtio
– Stable ABI

● Programmability for userspace defined
polices

● Do we have something existed?
– AF_XDP?

External vs vhost-dataplane

remote dataplane vhost-dataplane

VM metadata access Slow, inter process
communication

fast, function call

New feature
development

Hard, New types of
IPCs

easy, limited to
qemu (or
programmibility
from backend)

Compatibility Complex, extra
works on the
backend

easy, limited to
qemu

New backend
integration

Hard, need to know
all about virtio

easy, no need to
know virtio

Attack surface Increased limited to qemu

Backend visibility May be transparent Visible

Virtio-net = virtio + networking

● Vhost dataplane
– Virtio functions in vhost IOThread
– Networking functions in the backend

● Limitation
– More cores for multi process cooperation
– The ideal networking backends does not exist

in real world
● invent one?

– ...

Status & TODO

● Status
– prototype

● Basic IOThreads / Virtqueue helpers
● TAP drive

– -device virtio-net-pci,netdev=vd0 -netdev vhost-
dp,id=vd0,driver=tap-driver0 -object vhost-dp-tap,id=tap-driver0

– RFC sent in next few months

● TODO
– Dpdk static linking
– vIOMMU, Multiqueue
– Benchmarking

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

