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● History & Evolution of vhost
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● Vhost dataplane 
● TODO
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Userspace qemu networking is slow

● Limitation of both qemu and backend
– Run inside mainloop

● No real multiqueue
● No dedicated thread, No busy polling

– Extra data copy to internal buffer
– TAP

● syscall to send/receive message

– IRQ/ioexit is slow
● VCPU needs to be blocked
● Slow path

– No burst/bulking
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VHost

● Offload dataplane to another process
– kthread or userspace process

● A set of API that did
– Features Negotiation
– MEM Table
– Dirty page logging
– Virtqueues setting
– Endianess
– Device specific

● An API transport
– ioctl()
– AF_UNIX 



  

So far so good?



  

How hard for adding a new feature

● Formalization in Virtio Specification
● Codes in qemu userspace virtio-net 

backend
● Vhost protocol extension:

● Vhost-kernel (uapi), vhost-user (has its own spec)
● Versions, feature negotiations, compatibility

● Vhost support codes in qemu (user and 
kernel)

● Features (bugs) duplicated everywhere:
– vhost_net, dpdk, TAP, macvtap, OVS, VPP, qemu



  

Even if we manage to do this



  

Device IOTLB
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Issue

Datapath needs information from control 
path. But vhost control path is not designed 
for high performance.
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Issue

Networking backend is transparent to qemu 
in the case of vhost-user. Net specific request 
through vhost-user.



  

Migration compatibility
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Issue

Though features was negotiated during 
startup. Backend needs to implement each 
features for providing migration compatibility.



  

Attack surface
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Issue

We don’t want to trust vhost-user backend
But we share (almost) all memory to it!



  

Issues with external vhost process

● Complexity in Engineering
– Hard to be extended, duplicated codes(bugs) in many 

places

● Performance is not always good
– Datapath can not be offloaded completely

● Visibility of networking backend
– Re-invent wheels in vhost-user procotol

● Divergence of protocol between vhost-kernel 
and vhost-user 
– Workarounds, how to deal with the 3rd vhost transport?

● Increasing of attack surface



  

Vhost dataplane =
Vhost through qemu IOThread

● Vhost IOThreads
– Datapath in vhost IOThread

● Hide VM state from backends
● Function call for state 

accessing, better vIOMMU
● Decouple vitio out of backends

– Full functional features 
through control vq

– Fast address translation 
(vhost memory table)

– Copy inside qemu 

– Drivers for various backends

– Multiqueue
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Vhost dataplane
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Inline driver
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OVS-dpdk

Multi-process cooperation
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Vhost friendly networking backend

● Generic inline networking functions:
● TX/RX, Multiqueue, QOS, GSO, steering …

● Secure and efficient IPC
– No knowledge of virtio
– Stable ABI 

● Programmability for userspace defined 
polices

● Do we have something existed?
– AF_XDP?



  

External vs vhost-dataplane

remote dataplane vhost-dataplane

VM metadata access Slow, inter process 
communication

fast, function call

New feature 
development

Hard, New types of 
IPCs 

easy, limited to 
qemu (or 
programmibility 
from backend)

Compatibility Complex, extra 
works on the 
backend

easy, limited to 
qemu

New backend 
integration

Hard, need to know 
all about virtio

easy, no need to 
know virtio

Attack surface Increased limited to qemu

Backend visibility May be transparent Visible



  

Virtio-net = virtio + networking

● Vhost dataplane
– Virtio functions in vhost IOThread
– Networking functions in the backend

● Limitation
– More cores for multi process cooperation
– The ideal networking backends does not exist 

in real world
● invent one?

– ...



  

Status & TODO

● Status
– prototype

● Basic IOThreads / Virtqueue helpers
● TAP drive

– -device virtio-net-pci,netdev=vd0 -netdev vhost-
dp,id=vd0,driver=tap-driver0 -object vhost-dp-tap,id=tap-driver0

– RFC sent in next few months

● TODO
– Dpdk static linking
– vIOMMU, Multiqueue
– Benchmarking



  

Thanks
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