
Increase KVM Performance/Density
with Hyper-V Memory Enlightenments Interface

Chao Peng (chao.p.peng@intel.com)

Contributors: Chao Gao, Yi Sun



Expectations in Memory Virtualization

• Performance
– People want near native memory 

performance in guest

– Memory virtualization overhead 

should be small

• Density
– Guest memory overcommit

• Some users want cheap VMs, 

memory sharing is acceptable

– Small memory footprint

• VM based containers require 

small memory footprint VMs

Space
High Capacity

Time

High Performance

People want fast and large size memory



Available Approaches for KVM/QEMU

• Performance
– Hugepage(2M/1G) for nesting paging(e.g. Intel® EPT) mapping

• Reduce pagefaults and TLB misses

– ‘-mem-prealloc’ guest memory

• Reduce pagefaults

• Density
– Host Swapping

• Linux automatically swaps out guest pages to disk when host 
memory pressure is high

– KSM(Kernel Samepage Merging)

• De-duplicate guest memory pages to save memory

– VirtIO balloon

• Guest unused memory can be returned to host and used for 
other guests



Hyper-V Memory Enlightenments

• Hyper-V enlightenments in general
– A para-virtualization approach to reduce virtualization overhead

– Guest is aware of virtualization and guest change is required

– Was initially designed by Microsoft on Hyper-V + Windows, 

recently expanded to Linux guest

– Similar to KVM paravirt_ops in arch/x86/kernel/kvm*.c

• Hyper-V memory enlightenments
– Memory zeroing

– Memory access hints

– Enlightened Page Fault Handler

They are used to improve performance/density on Hyper-V + Windows



Hyper-V Enlightenments on KVM

• Motivations
– Provide better Windows performance in a virtual machine 

under KVM

– Can also benefit Linux guest when it’s configured to

• KVM is Hyper-V compatible
– All enabling code live in arch/x86/kvm/hyperv.c

• Hyper-V hypercall page & assist page

• Time reference count

• VAPIC enlightenment

• Guest Crash enlightenment

– Patches still WIP in community to date

• PV TLB flush enlightenment

• Nested enlightenments: Enlightened VMCS/MSR bitmap 
enlightenment

– Memory enlightenments: not enabled yet



Memory Zeroing Enlightenments

• Double-zeroing
– VMM zeros all memory before giving it to guest

• Prevents information disclosure 

– Operating systems(guest) zero memory again

• Because memory content is non-deterministic

1.28 2.56 5.12
10.24

20.48

40.96

81.92

0

10

20

30

40

50

60

70

80

90

32M 64M 128M 256M 512M 1G 2G

Memory Zeroed

Time Cost for zeroing(ms)

NOTE: the data was collected on 
specific hardware/software, your 
data may differ depending on 
configurations.



Memory Zeroing Enlightenments

• Double-zeroing can be avoided
– Host zeroing is needed anyway

• Information disclosure is intolerable

– Guest can skip zeroing for the first time access

• Boot memory zeroing

• Hot-add memory zeroing

• Benefits
– Static mapped memory

• Save CPU cycles for zeroing(e.g. booting faster)

– Dynamic mapped memory

• Save CPU cycles for zeroing(e.g. booting faster)

• If guest lacks ‘zero page’ and zeroing results real allocation, 
then more benefits:

– Reduce pagefaults when zeroing

– Reduce memory allocated to guest, hence increase density



Memory Zeroing on KVM

• KVM enabling
– Memory is already zeroed before mapped to guest

– Expose memory zeroing capability to guest

– Usually dynamic mapping is used, we can still tell guests 
we zeroed all the memory, although the zeroing happens at 
pagefault time

• Windows guest
– Supported Windows editions benefit from:

• Boot memory zeroing

• Hot-add memory zeroing

• Linux guest 
– Boot memory: Certain boot memory zeroing can be 

avoided. Example: 64M zeroing in swiotlb_init()

– Hot-add memory: Linux does not zero hot-added memory



Memory Access Hints

• Cold hint
– Guest OS indicates the set of physical pages which can be 

unmapped and removed from the guest’s working set

– Host will trim unneeded pages to increase VM density

• Hot hint
– Allows guest OS to indicate the set of physical pages 

needed for frequent or upcoming access

– Host will opportunistically pre-fault these pages such that 

subsequent access should not fault



Memory access hints on KVM

• VirtIO balloon
– Designed for VM memory over-committing

• Same as increasing container density

– Implemented two fundamental operations

• Inflate: memory is taken from guest to host

• Deflate: memory is taken from host to guest

– Similar to Hyper-V memory access hints in several ways

• Guest memory can be ‘free-ed’ to host

• The free-ed memory can be re-allocated

• Both work on page granularity

– Restriction

• A third-part monitoring program is required, to monitor both host/guest 
memory pressure, then adjust guest memory manually, or automatically

• Free Page Hinting
– Developed by Nitesh Narayan Lal, still in upstreaming

– Based on VirtIO balloon, but guest notify host on each arch_free_page()

– Use MADV_FREE instead of MADV_WONTNEEDED which inflate uses



Memory access hints on KVM

• Cold hint
– Free page hinting is quite close to Hyper-V cold hint

– Linux guest can benefit from it once merged

– Windows guest may be a problem, depending on the availability of ‘free’ hook

– If free hook does not exist then some Hyper-V wrapper around free page 
hinting is needed

• Hot hint
– No existing alternative in KVM

• Hot hint was designed for performance improvement while deflate of 
VirtIO balloon more focuses on memory return from host to guest

• Hot hint can pre-fault any memory while VirtIO deflate can only return 
memory inflated

– KVM Enabling

• KVM implementation is simple, only need to map requested pages

• Windows guests(supported editions) require no code change at all

• Linux guest support is something challenge: We need find the relevant 
code that can benefit from hot hint



Enlightened Page Fault Handler

• Hyper-V EPF(Enlightened Page Fault )
– Normally, host software handles page fault synchronously by 

resolving the access fault and resuming the vCPU upon 
access fault completion

– EPF allows the guest OS to reschedule threads on a vCPU 
which caused the page fault 

• KVM APF(Asynchronous Page Fault) 
– APF is already enabled in KVM and Linux guest

– KVM APF is almost identical to Hyper-V EPF

– It’s hard to implement APF in Window guest

• Page fault handling are core code for the kernel

– We can expose EPF interface to Windows, by reusing APF 
implementation in KVM



Summary

• Memory zeroing
– Fast booting/instantiation

• Memory cold access hint
– Increase density

• Memory hot access hint
– Fast booting/instantiation

– Reduce runtime memory virtualization overhead

• Asynchronous Page Fault
– Improve runtime performance

• Practice for KVM as a Hyper-V compatible Hypervisor
– We need clear interface/implementation separation when 

developing new features



Reference

• Guest Memory Overcommit - Page hinting, resizing & more
https://www.linux-kvm.org/images/f/ff/2011-forum-memory-overcommit.pdf

• [RFC,QEMU] kvm: Support for guest page hinting 
https://patchwork.kernel.org/patch/10458411/

• [v21,0/5] Virtio-balloon Enhancement
https://patchwork.ozlabs.org/cover/857395/

• KVM as a Microsoft-compatible hypervisor
https://www.linux-kvm.org/images/0/0a/2012-forum-kvm_hyperv.pdf

• Hypervisor Top Level Functional Specification(TLFS)
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs

https://www.linux-kvm.org/images/f/ff/2011-forum-memory-overcommit.pdf
https://patchwork.kernel.org/patch/10458411/
https://patchwork.ozlabs.org/cover/857395/
https://www.linux-kvm.org/images/0/0a/2012-forum-kvm_hyperv.pdf
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs


Thanks!


