
Three-hot Technologies
and Their Usages at Huawei’s Public Cloud

Liu Jinsong, Huang Zhichao
Huawei



Agenda

• Online update requirements @ cloud

• Huawei’s 3-hot technologies
– Hot patch
– Hot replacement
– Hot migration (live migration J)

• 3-hot usages @ Huawei Cloud



Online update requirements @ cloud

• Cloud is complicated, need fix/update frequently
– Bugs & security holes

• Hundreds of CVE reports per year

• High risk security holes
– XSA-108

– Intel security hole: spectre, meltdown, and … (it’s just 1 hole but …)

– Components upgrade 
• Openstack components: nova, neutron, etc.

• VM related components: libvirt, qemu, ovs, vims, etc.

• Fast upgrade support newly-add features, say, once per month

– Hostos upgrade

• New CPU/Chipset support, i.e, Skylake adds ~40 hardware features

• New kernel support, w/ better performance and newly-add features

– CPU microcode upgrade, hardware broken

• Microcode for Intel security hole

• Memory error: UCNA, SRAO, SRAR

• Other unbelievable hardware broken: i.e., CPU crazy fans L



Online update requirements @ cloud

• We have to fix/upgrade the SPEED car !!!



Huawei’s 3-hot technologies

�����
���	 ��	�����
���	

• C = D
• B =

• - D = / = C
• = B D

=
• / = D =

= C
• = / =

= D /=

= • = = D
• = B D =
• ( B =

• ) = C

=
= J 

• = =
• ) D = =
• = / B

= =

• = B =
• D B =



Hot patch
• Hot-patch for Xen

– xSplice-like solution (thanks Konrad @ Oracle)
– Trampoline jump at the head of old func

• Wait for all pCPUs to stop and apply together
• clean stack ensure not running at any CPU

– Idle
– Before vmentry

• cpuid serializing 
– Enhancement

• Auto build from a patch and auto test
• A framework to hot-patch a POD

– Retry, revert, and reboot handler
• Support hot-patching assembly code

• Hot-patch for KVM & Linux
– livepatch combine consistency model of kGraft + kPatch
– https://www.slideshare.net/GlobalLogicUkraine/linux-kernel-live-patching

• Hot-patch for usrspace processes
– Huawei’s Dopra, a framework
– Patching qemu, ovs, vims, …

https://www.slideshare.net/GlobalLogicUkraine/linux-kernel-live-patching


Hot patch use case @ Huawei cloud

• Fix CVE-2017-5715 (Intel Spectre) at Xen hypervisor
– xSplice fix C function but cannot fix assembly code 

– xpatch/tools/create-diff-object.c

• Define and handle special symbol (w/ prefix ‘_fix_’)

• Find correct assembly address to replace

– Fix vmx_asm_vmexit_handler

--- arch/x86/hvm/vmx/entry.S

+++ arch/x86/hvm/vmx/entry.S

@@ -116,6 +116,81 @@ vmx_asm_vmexit_handler:

+    ALIGN

+    .globl _fix_vmx_asm_vmexit_handler
+    _fix_vmx_asm_vmexit_handler: // special symbol w/ prefix ‘_fix_’

push %rdi

push %rsi

……
push %r15

+        xor %edi,%edi // fix assembly

+ xor %esi,%esi

+        ……
+        xor %r15,%r15

get_current(bx)

……



Advantages and disadvantages of 
hot patch

• Hot patch
– Light-weight operation for cloud SRE
– But troublesome for SRE to manage baseline branches
– Some fix are hard to be hot-patched

• data structure (shadow variable after kernel 4.15)
• .rodata
• cannot change function api and semantic
• unsafe to fix ftrace handler w/ infinite loop risk
• unsafe to fix NMI handler
• booting stage bugfix
• inline function
• should be very careful about deadlock
• do not support newly-add functions
• ……



Hot replacement

• Components entirely upgrade
– Reboot-able components: VM runtime-unrelated

• nova, neutron, libvirt, etc.
– Non reboot-able components: VM runtime-related

• compute (qemu), storage (vims), network (ovs), etc.



Hot replacement framework

• Unified replacement framework for OVS (network) and VIMS (storage)
– Preload and lazy-offload, fast switching (less than 100ms)
– State vs. stateless design
– Add component agent connecting qemu (if possible) so that no disconnect and no re-connect

• Qemu is another story

 

Ring

 

 

disconnect

re-connect

 

States copy if need

VM  unpause

VM  pause



Hot replacement - qemu

• Qemu hot replacement
– Way 1: migrate vm locally

• may fail since insufficient memory
• may fail for VM under high dirty page speed

– Way 2: share page
• Zero copy
• Performance impact by transparent huge pages

– Way 3: share page table, cover old qemu VMAs except 
that of VM

• Zero copy
• keep pid unchange
• Much bigger switch downtime, kill old qemu then 

covered by new qemu VMAs
• Cannot revert if new qemu fail

– Way 4: share page table, but exec new qemu process
• Zero copy
• Preload new qemu sharing VM PUD with old qemu
• Pause old qemu and unpause new qemu
• Lazy-offload old qemu if new qemu success, or, 

revert old qemu if new qemu fail
• Different pid but acceptable



Hot migration -- challenges
• Live migration @ virtualization

– Xen live migration
• PV is unfriendly to live migration

– Buggy PV disconnect and re-connect
– Ecosystem issue, work around by guest whitelist but >15% 

guest cannot migrate

• Support migration among different CPUs via emulated tsc
but w/ performance issue

– KVM live migration
• Not support migration among different CPUs because of 

native tsc (until Skylake tsc scaling)

– SR-IOV migration
– Giant VM migration under huge memory dirty ratio



Hot migration -- challenges

• Live migration @ cloud
– Cloud environment challenges

• Cloud environment is very complicated and unfriendly to live migration
– Different software version and configuration
– Different hardware types: CPU, MSRs
– Even buggy network switch may result in migration error !!

• different storage/network types
– Performance challenges

• Network breaktime, growing w/ VPC scale (10S->10 minutes)
• Communication among cloud components

– Nova, neutron, libvirt, etc.

– Reliability challenges
• Migrating VM may dead or brain-split
• Ensure vm 100% survive when migrate fail

– Large scale parallel migration challenges
• Server congestion, network congestion, etc.
• Gratuitous ARP may not accepted by parallel migrating vms
• Malfunction server isolation

– Blablabla ……



Hot migration design @ Huawei cloud

• De-couple
– Event mechanism and publisher-subscriber model
– Support different storage/network types

• Reliability
– Shakehands and roll-back when anything wrong (vm will survive)
– How about shakehands broken (say, network issue)?

• image lock: who get the image lock will survive (vm will not 
brain-split)

• Performance
– Fast event channel for performance-critical ops
– Network trampoline when VPC path not ready

• Giant vm migration
– Support any giant vm migration under any dirty page ratio

• If only transfer ratio > dirty page ratio



Hot migration result @ Huawei cloud 

• Live migration for OS upgrade at all Huawei cloud sites
– Reliability

• 99.99% migration success

• 100% vm survive when migration fail for whatever reason

– Performance
• CPU downtime: ~25ms

• VPC network breaktime:

– 82%   breaktime < 50ms
– 99%   breaktime < 200ms
– 100% breaktime < 500ms 

– Degree of parallelism
• Upgrade > 2000 servers per night

• Technically support much higher parallelism but no enough free servers

– Support all giant vm live migration



Hot migration use case @ Huawei cloud

• MCE/Disk error/Filesystem readonly ……
– ~1%% server crash per day, while ~48% hardware issue

• Dynamic resource scheduling
• Distributed power management
• Fix CVE-2017-5715 (Intel Spectre) at KVM

– Better performance than upstream:   30% -> 10%-
– Retpoline optimization: remove uneccessary retpoline(no vcpus)
– IBPB/IBRS optimization: remove uneccessary IBPB/IBRS 

(novcpus, A->Idle->A)
– Microcode update, so that guest upgrade by itself



“Quote 
Placeholder”




