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Agenda

• MKTME Introduction
• MKTME Use Cases
• MKTME Enabling
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Background: Trusted VM in Cloud

VM protection by using encryption
• VM encrypted ‘at-rest’, ‘in-transit’ and ‘runtime’.
• There has been existing technologies for ‘at-rest’ 

and ‘in-transit’ encryption
• Qemu TLS support for live migration
• Qemu encrypted image support

• VM runtime encryption requires hardware 
memory encryption support

• AMD® SME/SEV
• Intel® MKTME

Launch VM on ‘Trustiness Verified’ Host
• Trusted hardware/location, etc.
• Trusted Cloud SW stack.
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Trusted VM w/ OpenCIT -- OpenStack as Example
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TME & MKTME Introduction

• New AES-XTS engine in data path to external memory 
bus.
• Data encrypted/decrypted on-the-fly when entering/leaving 

memory.

• AES-XTS uses physical address as “tweak”
• Same plaintext, different physical address -> different ciphertext.

• TME (Total Memory Encryption)
• Full memory encryption by TME key (CPU generated).

• Enabled/Disabled by BIOS.

• Transparent to OS & user apps.

• MKTME (Multi-key Total Memory Encryption)
• Memory encryption by using multiple keys.

• Use upper bits of physical address as keyID (see next)
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MKTME KeyIDs

• Repurpose upper bits of physical address as KeyID as shown below.
• Reduces useable physical address bits.

• Creates “aliases” of physical memory locations: different keyIDs can refer to the same page.

• Cache-coherency is not guaranteed for the same page that accessed by different keyIDs.
• CPU caches are unaware of keyID(still treat keyIDas part of PA)

• Architecturally upto 2^15-1 keyIDs (15 keyID bits).
• Reported by MSR. Configured by BIOS.
• KeyID 0 is reserved as TME’s key (not useable by MKTME).

• New PCONFIG instruction to program keyID w/ associated key (see next)

Platform Addressable MemoryKeyID

MAXPHYADDR - 1

0

Reserved
63

MK_TME_MAX_KEYID_BITS
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MKTME KeyID Programming Overview

New Ring-0 instruction PCONFIG to program the KEYID and associated key
• Package scoped

• Supports programming keyID to 4 modes:

• Using CPU generated random ephemeral key (invisible to SW)

• Using SW provided key (tenant’s key)

• No encryption – plaintext domain

• Clearing a key (using TME’s key effectively)

• Allows SW to specify crypto algorithms

• Only AES-XTS-128 for initial server intercept

8
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VM Protection & Isolation With MKTME

• Protection
• Use keyID to encrypt VM memory at runtime

• Isolation
• Use different keyIDs for different VMs 

• Software Enabling
• For CPU access, SW sets keyID at PTEs
• IA page table (host)
• EPT (KVM)

• For Device access (DMA)
• w/ IOMMU: Set keyIDto IOMMU page table
• Physical DMA: Apply keyIDto PA directly
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Highlights of MKTME

Guests continue to run “without modifications” in MKTME domains:
• Encrypted with 1) CPU-generated ephemeral key, or 2) the one provided by API (“tenant-

controlled keys”)

• Virtio, including optimization (direct access to guest memory by kernel) continues to work 

• Direct I/O (including accelerators, FPGA) assignment (including SR-IOV VFs) is available 

• Live migration can be supported (among platforms that support MKTME)

• vNVDIMM can be supported w/ limitation (because of physical address “tweak”)

• Host DIMM configuration cannot be changed cross reboots.

• Qemu DIMM & vNVDIMM configuration cannot be changed cross VM reboots.
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• MKTME Introduction
• MKTME Use Cases
• MKTME Enabling
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MKTME Enabled Use Cases

1. Launch Tenant VMs with in-use protection (CPU generated keys)
• Let CSP handle the keys

• VM image provided by CSP

2. Launch Tenant VMs with at-rest and in-use protection with full tenant-control
• VM image encrypted @rest with tenant-specific keys

• Keys in tenant control
• VM memory isolation with tenant-specific keys

• Trustiness verified host
• Additional: integrity verification of VM image

Use-case Extension: 
KeyID Sharing for all VMs launched by single tenant with the same tenant-key (or CPU generated key).



13

Cloud 

Agent

HARDWARE 

Intel
® 
TXT / TPM

Intel® MKTME

HYPERVISOR (Qemu/KVM)

VM

Policy

Agent

MKTME ephemeral key

DRAM*

Keyid 3

Keyid 3

Keyid 0

Keyid 0

Keyid 3

Cloud 

Manager

1

2

3

Image

Repo

VM Launch w/ CPU Generated Keys

TME key

VM Launch

Policy Enforcement

VM Launch
w/ KeyID

CSP Controlled

VM Launch w/
• CPU generated key
• CSP provided VM image

Security Properties
• w/ VM runtime protection
• w or w/o at-rest and in-transit protection
• No Host Trustiness Verification



14

Cloud 
Agent

Attestation 
Service

HYPERVISOR (Qemu/KVM)

VM

DRAM*

KeyID 3

KeyID 3

KeyID 1

KeyID 1

KeyID 3

Cloud 
Manager

2

3

4

Image
Repo

VM Launch w/ Tenant Controlled Keys

1Trustiness
Verification

VM Launch

Policy Enforcement

Key 
Server

Upload VM image encrypted
w/ tenant key

0

Request Tenant-key
Return wrapped key

Wrapped tenant key

Tenant key

MKTME ephemeral key

VM Launch
w/ KeyID

VM Launch w/
• Tenant provided key
• Tenant provided encrypted VM image
• Tenant controlled key server
• Trustiness verified host
• VM image integrity verified
• Use TPM to wrap/unwrap tenant-key

CSP ControlledTenant Controlled

Security Properties
• w/ VM runtime protection
• w/ VM at-rest protection
• w/ or w/o in-transit protection
• w/ Host trustiness verification
• w/ VM image integrity verification

Policy
Agent

TME key

HARDWARE 
Intel® TXT / TPM

Intel®  MKTME



15

KeyID Sharing Among VMs
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MKTME Enabling
High Level

• Host kernel
• mkey APIs

• Key/KeyID Management
• Core-MM KeyID support
• VFIO/IOMMU KeyID support
• DMA KeyID support

• KVM
• KeyID setup in EPT

• Qemu
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• Apply KeyID to guest memory
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MKTME Enabling Current Status

• Specification has been published [1]
• Core kernel enabling status
• Some preliminary patches have been upstreamed
• Feature emulation (CPUID, MSR); PCONFIG

• Proposal of some components have been sent to community for feedback
• Key management API: Using kernel key retention service

• Other components WIP internally
• Core-MM keyIDsupport; IOMMU keyIDsupport; DMA keyIDsupport; …

• KVM/Qemu enabling status
• PoC has been done to prove MKTME actually works.

• Depending on core kernel parts ready for formal patches.

[1] https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
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