
1

Runtime VM Protection By
Intel® Multi-Key Total Memory Encryption

(MKTME)
Kai Huang @ Intel Corporation

LINUXCON + CONTAINERCON + CLOUDOPEN
Beijing, China, 2018

2

Legal Disclaimer

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to
change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by
visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

3

Agenda

• MKTME Introduction
• MKTME Use Cases
• MKTME Enabling

4

Background: Trusted VM in Cloud

VM protection by using encryption
• VM encrypted ‘at-rest’, ‘in-transit’ and ‘runtime’.
• There has been existing technologies for ‘at-rest’

and ‘in-transit’ encryption
• Qemu TLS support for live migration
• Qemu encrypted image support

• VM runtime encryption requires hardware
memory encryption support

• AMD® SME/SEV
• Intel® MKTME

Launch VM on ‘Trustiness Verified’ Host
• Trusted hardware/location, etc.
• Trusted Cloud SW stack.

Cloud
Orchestrator

Cloud
Agent

VM Image
Repo

Compute Node
Intel® Arch

VM Launch

Cloud
Agent

Compute Node
Intel® Arch

VM LaunchLive Migration

❶ At-rest

❷ Runtime
❸ In-transit

Typical VM Lifecycle in Cloud

5

Trusted VM w/ OpenCIT -- OpenStack as Example
Enterprise Data Center Cloud Service Provider

Key Broker

OpenStack
Barbican

Trust
Director

OpenStack
Nova

OpenStack
Glance

OpenStack
Horizon

App
OS

App
OS

App
OS

TPM Intel Arch w/ TXT

Compute Node

R e p o r t i n g

P o l i c y E n f o r c e m e n t

V e r i f i e r

Trust Agent

In t e l O p e n S t a c k

Attestation Server

KB Proxy

M e a s u r e m e n t

Attestation
hub

tbootxm

Intel® Open CIT helps on Host trustiness verification

6

TME & MKTME Introduction

• New AES-XTS engine in data path to external memory
bus.
• Data encrypted/decrypted on-the-fly when entering/leaving

memory.

• AES-XTS uses physical address as “tweak”
• Same plaintext, different physical address -> different ciphertext.

• TME (Total Memory Encryption)
• Full memory encryption by TME key (CPU generated).

• Enabled/Disabled by BIOS.

• Transparent to OS & user apps.

• MKTME (Multi-key Total Memory Encryption)
• Memory encryption by using multiple keys.

• Use upper bits of physical address as keyID (see next)

7

MKTME KeyIDs

• Repurpose upper bits of physical address as KeyID as shown below.
• Reduces useable physical address bits.

• Creates “aliases” of physical memory locations: different keyIDs can refer to the same page.

• Cache-coherency is not guaranteed for the same page that accessed by different keyIDs.
• CPU caches are unaware of keyID(still treat keyIDas part of PA)

• Architecturally upto 2^15-1 keyIDs (15 keyID bits).
• Reported by MSR. Configured by BIOS.
• KeyID 0 is reserved as TME’s key (not useable by MKTME).

• New PCONFIG instruction to program keyID w/ associated key (see next)

Platform Addressable MemoryKeyID

MAXPHYADDR - 1

0

Reserved
63

MK_TME_MAX_KEYID_BITS

8

MKTME KeyID Programming Overview

New Ring-0 instruction PCONFIG to program the KEYID and associated key
• Package scoped

• Supports programming keyID to 4 modes:

• Using CPU generated random ephemeral key (invisible to SW)

• Using SW provided key (tenant’s key)

• No encryption – plaintext domain

• Clearing a key (using TME’s key effectively)

• Allows SW to specify crypto algorithms

• Only AES-XTS-128 for initial server intercept

8

9

VM Protection & Isolation With MKTME

• Protection
• Use keyID to encrypt VM memory at runtime

• Isolation
• Use different keyIDs for different VMs

• Software Enabling
• For CPU access, SW sets keyID at PTEs
• IA page table (host)
• EPT (KVM)

• For Device access (DMA)
• w/ IOMMU: Set keyIDto IOMMU page table
• Physical DMA: Apply keyIDto PA directly

10

Highlights of MKTME

Guests continue to run “without modifications” in MKTME domains:
• Encrypted with 1) CPU-generated ephemeral key, or 2) the one provided by API (“tenant-

controlled keys”)

• Virtio, including optimization (direct access to guest memory by kernel) continues to work

• Direct I/O (including accelerators, FPGA) assignment (including SR-IOV VFs) is available

• Live migration can be supported (among platforms that support MKTME)

• vNVDIMM can be supported w/ limitation (because of physical address “tweak”)

• Host DIMM configuration cannot be changed cross reboots.

• Qemu DIMM & vNVDIMM configuration cannot be changed cross VM reboots.

11

Agenda

• MKTME Introduction
• MKTME Use Cases
• MKTME Enabling

12

MKTME Enabled Use Cases

1. Launch Tenant VMs with in-use protection (CPU generated keys)
• Let CSP handle the keys

• VM image provided by CSP

2. Launch Tenant VMs with at-rest and in-use protection with full tenant-control
• VM image encrypted @rest with tenant-specific keys

• Keys in tenant control
• VM memory isolation with tenant-specific keys

• Trustiness verified host
• Additional: integrity verification of VM image

Use-case Extension:
KeyID Sharing for all VMs launched by single tenant with the same tenant-key (or CPU generated key).

13

Cloud

Agent

HARDWARE

Intel
®
TXT / TPM

Intel® MKTME

HYPERVISOR (Qemu/KVM)

VM

Policy

Agent

MKTME ephemeral key

DRAM*

Keyid 3

Keyid 3

Keyid 0

Keyid 0

Keyid 3

Cloud

Manager

1

2

3

Image

Repo

VM Launch w/ CPU Generated Keys

TME key

VM Launch

Policy Enforcement

VM Launch
w/ KeyID

CSP Controlled

VM Launch w/
• CPU generated key
• CSP provided VM image

Security Properties
• w/ VM runtime protection
• w or w/o at-rest and in-transit protection
• No Host Trustiness Verification

14

Cloud
Agent

Attestation
Service

HYPERVISOR (Qemu/KVM)

VM

DRAM*

KeyID 3

KeyID 3

KeyID 1

KeyID 1

KeyID 3

Cloud
Manager

2

3

4

Image
Repo

VM Launch w/ Tenant Controlled Keys

1Trustiness
Verification

VM Launch

Policy Enforcement

Key
Server

Upload VM image encrypted
w/ tenant key

0

Request Tenant-key
Return wrapped key

Wrapped tenant key

Tenant key

MKTME ephemeral key

VM Launch
w/ KeyID

VM Launch w/
• Tenant provided key
• Tenant provided encrypted VM image
• Tenant controlled key server
• Trustiness verified host
• VM image integrity verified
• Use TPM to wrap/unwrap tenant-key

CSP ControlledTenant Controlled

Security Properties
• w/ VM runtime protection
• w/ VM at-rest protection
• w/ or w/o in-transit protection
• w/ Host trustiness verification
• w/ VM image integrity verification

Policy
Agent

TME key

HARDWARE
Intel® TXT / TPM

Intel® MKTME

15

KeyID Sharing Among VMs

Compute Node

Cloud SW

mKey API KVM

MktmePolicy {

tenant_id: <UUID>,
key_type: “ephemeral” | “persistent”,

key_server: https://...,
allow_to_share: “yes” | “no”

}

Qemu

KeyID P olicy KeyID V M s

Policy1: <tenant1 , “ephem eral”> keyID 1 VM 1, VM 2..

Policy2: <tenant2 , “persistent”, xxxxxx> keyID 2 VM 3

N ew VM Launch

w / M ktm ePolicy

Exam ple: KeyID sharing is based on KeyID Policy: <tenant_id, key_type, tenant_key>

Cloud SW :
• M aintains ‘KeyID Policy-to-KeyID ’ table
• M akes keyID sharing decision according to the table
• U pdates the table on VM launch and teardow n

m Key API: M KTM E key m anagem ent API

Apply keyID to

VM memory

Launch VM

w/ keyID

Cloud SW makes decision whether to share or not.

Launch VM

https://.../

16

Agenda

• MKTME Introduction
• MKTME Use Cases
• MKTME Enabling

17

MKTME Enabling
High Level

• Host kernel
• mkey APIs

• Key/KeyID Management
• Core-MM KeyID support
• VFIO/IOMMU KeyID support
• DMA KeyID support

• KVM
• KeyID setup in EPT

• Qemu

• Receive KeyID from Cloud SW
• Apply KeyID to guest memory

IA -PT
KeyID s
for H ost

EPT

VT-d

KeyID s
for guest

KeyID s
for D M A

KVM

Key/KeyID
M anagem ent

M KTM E Engine

C ore-M M code
w ith KeyID

Setting KeyID s
in EPT

VM
G uest M em ory

Q EM U

D evice
(N IC , SC SI, etc)

m key APIs

G uest m em ory
w ith KeyID

VFIO /IO M M U
w ith KeyID

KeyID s

Encrypted
M em ory w ith

KeyID

PCO N FIG

N ew C ode

Vhost-kernel

D irect I/O V irtio /Vhost Live M igration

D M A w ith
KeyID

M M U N otifier

Cloud SW Launch VM
w / KeyID

KeyID s
for D M A

18

MKTME Enabling Current Status

• Specification has been published [1]
• Core kernel enabling status
• Some preliminary patches have been upstreamed
• Feature emulation (CPUID, MSR); PCONFIG

• Proposal of some components have been sent to community for feedback
• Key management API: Using kernel key retention service

• Other components WIP internally
• Core-MM keyIDsupport; IOMMU keyIDsupport; DMA keyIDsupport; …

• KVM/Qemu enabling status
• PoC has been done to prove MKTME actually works.

• Depending on core kernel parts ready for formal patches.

[1] https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf

THANKS

