AN RCU WITH LOW SYNC
LATENCY

PRCU

N]
/HANG HENG

WHAT IS RCU

Read-Copy Update

A synchronization primitive |

: EXCLUSIVE
which allows readers and LocK
writers execute concurrently |

Great for read-mostly data

READER

Two phase: . WRITER
E LOCK

- update on a new copy

- reclaim the old copy (when
it is safe)

LIST WITH RWLOCK

s | OCK_READ |

e e o g
) A s
&
)
¥
il
"N
- -

e UNLOCK_WRITE || LOCK_READ |rmmmee———

[AT grmes
‘, ll
*/
|
H
t
4 .

| UNLOCK_READ |rammmercaene

LIST WITH RCU

—q—nwa-‘ RCU_READ_LOCK |

—ereemere| RCU_READ_UNLOCK [

e SYNCHRONIZE _RCU |

RWLOCK OR RCU

SAME PROBLEM

- Reader-Writer Locks - RCU

- when writers can enter CS - when updaters can reclaim the
resource

ENSURE ALL PREVIOUS READERS
HAVE LEFT

RWLOCK OR RCU

DIFFERENT ATTITUDE

- Reader-Writer Locks - RCU

- different algorithms for different - extremely low overhead on read
workloads, e.g. rwsem, brlock - side (fastpath)

- extremely high overhead on write
side

RWLOCK OR RCU

TRADEOFF

MUCH ATOMIC OPS

USING ATOMIC OPS

- Ref Counter - Single
- R: heavy contention

- W: check one counter

)
- COUNTER

USING ATOMIC OPS

- Ref Counter - Multiple
- R: contention reduced

- W: check more counters

USING ATOMIC OPS

- CSNZI - Hierarchical

- R: contention reduced, may
increase latency

- W: check one counter

USING ATOMIC OPS

- Ref Counter - 1:1
- R: No contention

- W check all counters

- COUNTER

REMOVE FENCE

WHAT IS FENCE

| 1.WRITE X
2 .FENCE
| {3.READ Y

— ©
)z

LOCK WITH FENCE

& “ENGEREES
SEESE
. WAIT

PROBLEM WITHOU'T FENCE
INCONSISTENCY

% “ENTER=ES
SEESE

PROBLEM WITHOU'I' FENCE

INCONSISTENCY

WHEN DO WE ENSURE
READERS CAN SEE
W=17

THINKING ON HARDWARE I

BOUNDED STALENESS

!
.'

THINKING ON HARDWARE I

BOUNDED STALENESS

READER WILL SEE THE WRITER

THINKING ON HARDWARE 11

BIASED FENCE

- Target : the buffer of issued instructions
- Light fence:
- Async or Passively report the buffer info

- Heavy fence:

- Wait for remote cores’ previously issued instructions committing

SOLUTION ON SOFI'WARE

MONOTONE VERSION

READER .] WRITER] 5 READER

GLOBAL_CNT++

~ LOCAL_CNT SYNC &

SOLUTION ON SOFI'WARE

MONOTONE VERSION

READER | ? Bags WRITER | 5 READER

GLOBAL_CNT++

~ LOCAL_CNT SYNC &) ;, @ LOCAL_CNT SYNC

WHAT IF READERS HAVE NO CHANCE TO
SYNC

SUPPLEMENT

EVENTS & REDUCE EVENTS

- Event
- [P
- Reducing Events

- Domain L

. OTHER
- CONTEXT

N N - ouT
- DOMAIN | DOMAIN DOMAIN

PRCU SYNCHRONIZATION PHASES

.1 CPU

WAIT FOR LEAVING

SYNCHRONIZATION PHASES

| INCREASE VERSION '

No dependency: 0(1) if hardware support

=} : il -+ : =
. CPU i cu M CPU 1' cu B UM

T oy

CHECK VERSION
TR

l CPU CPU

WAIT FOR LEAVING

SYNCHRONIZATION PHASES

| INCREASE VERSION '

No fence: 0(1) cache miss + |
OCN) 1instructions (lcycle on pipeline) .

FR1

'l CPU . CPU

WAIT FOR LEAVING

SYNCHRONIZATION PHASES

| INCREASE VERSION i

CHECK VERSION

Software Limitation

WAIT FOR LEAVING

CORRECGCTNESS

- Testing
- Pass rcutorture (—torture rcu)

- Formal Verification

- Pass model checking

FORMAL VERIFICATION

- Tool

- CBMC, https://github.com/diffblue/cbmc

- Target
- prcu_read lock, prcu read unlock, synchronized prcu
- Hardware
- 16 cores, Intel Xeon CPU@?2.4GHz, 16G Memory
- Configuration
- 2 reader threads + 1 writer thread + 1 main thread (+ 3 interrupt threads)

- safety + liveness

- Memory model : SC, TSO, PSO

https://github.com/diffblue/cbmc

PERFORMANCE

COMPARE WITH TREE RGU (LINUX 4.0.5)

O RCU-expedited
1,000,000,000

100,000,000
10,000,000

1,000,000
71,832K
o

100,000 | 42,813K,328K = 47,861K 62,903K
O= —0) —0) O

. A

10,000

1,000

m\
(]
—
O
P
O
W
P
O
c
(]
)
o}
-
O
=
P
wm

100 6iK 60K
10k 12K

10

SUMMARY

- Introduce a problem on reader-writer synchronization

- A solution call PRCU which has low latency on ideal hardwares

- Proof correctness with testing and formal verification

- Code: https://dgithub.com/lihao/linux-prcu

https://github.com/lihao/linux-prcu

THANKS

