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WHAT IS RCU

• Read-Copy	 Update	 

• A	 synchronization	 primitive	 
which	 allows	 readers	 and	 
writers	 execute	 concurrently	 

• Great	 for	 read-mostly	 data	 

• Two	 phase:	 

• update	 on	 a	 new	 copy	 

• reclaim	 the	 old	 copy	 (when	 
it	 is	 safe)

EXCLUSIVE 
LOCK

READER 
WRITER 
LOCK

RCU

READ READ WRITE



LIST WITH RWLOCK
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LIST WITH RCU
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RWLOCK OR RCU

• Reader-Writer	 Locks	 

• when	 writers	 can	 enter	 CS

• RCU	 

• when	 updaters	 can	 reclaim	 the	 
resource

SAME PROBLEM

ENSURE ALL PREVIOUS READERS 
HAVE LEFT



RWLOCK OR RCU

• Reader-Writer	 Locks	 

• different	 algorithms	 for	 different	 
workloads,	 e.g.	 rwsem,	 brlock	 …

• RCU	 

• extremely	 low	 overhead	 on	 read	 
side	 (fastpath)	 

• extremely	 high	 overhead	 on	 write	 
side

DIFFERENT ATTITUDE



RWLOCK OR RCU
TRADEOFF
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USING ATOMIC OPS

• Ref	 Counter	 -	 Single	 

• R:	 heavy	 contention	 

• W:	 check	 one	 counter

COUNTER
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USING ATOMIC OPS

• Ref	 Counter	 -	 Multiple	 

• R:	 contention	 reduced	 

• W:	 check	 more	 counters

COUNTER
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USING ATOMIC OPS

• CSNZI	 -	 Hierarchical	 

• R:	 contention	 reduced,	 may	 
increase	 latency	 

• W:	 check	 one	 counter
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USING ATOMIC OPS

• Ref	 Counter	 -	 1:1	 

• R:	 No	 contention	 

• W:	 check	 all	 counters
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WHAT IS FENCE

REMOVE FENCE
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LOCK WITH FENCE

CACHE CACHE

CACHE SYSTEM
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1.R = 1 
2.FENCE;  
3.IF (W == 0) 
4.  ENTER CS 
5.ELSE 
6.  WAIT

1.W = 1; 
2.FENCE; 
3.IF (R == 0) 
4.  ENTER CS 
5.ELSE 
6.  …
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INCONSISTENCY

PROBLEM WITHOUT FENCE

CACHE CACHE

CACHE SYSTEM
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1.R = 1  
2.IF (W == 0) 
3.  ENTER CS 
4.ELSE 
5.  WAIT

1.W = 1; 
2.FENCE; 
3.IF (R == 0) 
4.  ENTER CS 
5.ELSE 
6.  …
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INCONSISTENCY

PROBLEM WITHOUT FENCE

CACHE CACHE

CACHE SYSTEM
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1.R = 1  
2.IF (W == 0) 
3.  ENTER CS 
4.ELSE 
5.  WAIT

1.W = 1; 
2.FENCE; 
3.IF (R == 0) 
4.  ENTER CS 
5.ELSE 
6.  …

1
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BOUNDED STALENESS

THINKING ON HARDWARE I
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BOUNDED STALENESS

THINKING ON HARDWARE I
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BIASED FENCE

THINKING ON HARDWARE II

• Target	 :	 the	 buffer	 of	 issued	 instructions	 

• Light	 fence:	 

• Async	 or	 Passively	 report	 the	 buffer	 info	 

• Heavy	 fence:	 

• Wait	 for	 remote	 cores’	 previously	 issued	 instructions	 committing



MONOTONE VERSION

SOLUTION ON SOFTWARE 

READER WRITER

GLOBAL_CNT++

LOCAL_CNT SYNC

CHECK

READER

LOCAL_CNT SYNC

CHECK



MONOTONE VERSION

SOLUTION ON SOFTWARE 

READER WRITER

GLOBAL_CNT++

LOCAL_CNT SYNC

CHECK

READER

LOCAL_CNT SYNC

CHECK

WHAT IF READERS HAVE NO CHANCE TO 
SYNC



EVENTS & REDUCE EVENTS

SUPPLEMENT

• Event	 

• IPI	 

• Reducing	 Events	 

• Domain

CPU0 CPU1 CPU2 CPU3
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PRCU SYNCHRONIZATION PHASES

CPU CPU CPU CPU CPU CPU CPU CPU CPU
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SYNCHRONIZATION PHASES

CPU CPU CPU CPU CPU CPU CPU CPU CPU
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No dependency: O(1) if hardware support



SYNCHRONIZATION PHASES

CPU CPU CPU CPU CPU CPU CPU CPU CPU
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CHECK VERSION

CPU CPU CPU CPU CPU CPU CPU CPU CPU

IPI

WAIT FOR LEAVING

P1
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P3

P4

No fence: O(1) cache miss + 
 O(N) instructions  (1cycle on pipeline)



SYNCHRONIZATION PHASES

CPU CPU CPU CPU CPU CPU CPU CPU CPU
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WAIT FOR LEAVING
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Software Limitation



CORRECTNESS

• Testing	 

• Pass	 rcutorture(—torture	 rcu)	 

• Formal	 Verification	 

• Pass	 model	 checking



FORMAL VERIFICATION

• Tool	 

• CBMC,	 https://github.com/diffblue/cbmc	 

• Target	 

• prcu_read_lock,	 prcu_read_unlock,	 synchronized_prcu	 

• Hardware	 

• 16	 cores,	 Intel	 Xeon	 CPU@2.4GHz,	 16G	 Memory	 

• Configuration	 

• 2	 reader	 threads	 +	 1	 writer	 thread	 +	 1	 main	 thread	 (+	 3	 interrupt	 threads)	 

• safety	 +	 liveness	 

• Memory	 model	 :	 SC,	 TSO,	 PSO

https://github.com/diffblue/cbmc


COMPARE WITH TREE RCU (LINUX 4.0.5)

PERFORMANCE
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SUMMARY

• Introduce	 a	 problem	 on	 reader-writer	 synchronization	 

• A	 solution	 call	 PRCU	 which	 has	 low	 latency	 on	 ideal	 hardwares	 

• Proof	 correctness	 with	 testing	 and	 formal	 verification	 

• Code:	 https://github.com/lihao/linux-prcu

https://github.com/lihao/linux-prcu


THANKS


