
PRCU

AN RCU WITH LOW SYNC
LATENCY

张恒
ZHANG HENG

WHAT IS RCU

• Read-Copy	 Update	

• A	 synchronization	 primitive	
which	 allows	 readers	 and	
writers	 execute	 concurrently	

• Great	 for	 read-mostly	 data	

• Two	 phase:	

• update	 on	 a	 new	 copy	

• reclaim	 the	 old	 copy	 (when	
it	 is	 safe)

EXCLUSIVE
LOCK

READER
WRITER
LOCK

RCU

READ READ WRITE

LIST WITH RWLOCK

1 2 3 4

31 2 4

1 3 4

LOCK_READ

UNLOCK_READ LOCK_WRITE

UNLOCK_WRITE LOCK_READ

UNLOCK_READ

LIST WITH RCU

1 2 3 4

1 4

RCU_READ_LOCK

SYNCHRONIZE_RCU

R

1 2 3 4
R

31 2 4
R

RCU_READ_UNLOCK

R31 2 4

U

32

RWLOCK OR RCU

• Reader-Writer	 Locks	

• when	 writers	 can	 enter	 CS

• RCU	

• when	 updaters	 can	 reclaim	 the	
resource

SAME PROBLEM

ENSURE ALL PREVIOUS READERS
HAVE LEFT

RWLOCK OR RCU

• Reader-Writer	 Locks	

• different	 algorithms	 for	 different	
workloads,	 e.g.	 rwsem,	 brlock	 …

• RCU	

• extremely	 low	 overhead	 on	 read	
side	 (fastpath)	

• extremely	 high	 overhead	 on	 write	
side

DIFFERENT ATTITUDE

RWLOCK OR RCU
TRADEOFF

RWSEM

CSNZI

BRLOCK

HEAVY CONTENTION LIGHTWEIGHT

PRWLOCK

PRCU

RCU

PERCPU-RWSEM

COHORT LOCK

READER WRITER

LIGHT CONTENTION MORE ATOMIC OPS

NO CONTENTION MUCH ATOMIC OPS

NO FENCE IPI

NO BLOCKING IPI

NO BLOCKING IPI

USING ATOMIC OPS

• Ref	 Counter	 -	 Single	

• R:	 heavy	 contention	

• W:	 check	 one	 counter

COUNTER

READ

WRITE

READREAD READ READ

READ READ …

READ READ READ READ

USING ATOMIC OPS

• Ref	 Counter	 -	 Multiple	

• R:	 contention	 reduced	

• W:	 check	 more	 counters

COUNTER

WRITE

COUNTER COUNTER

READ READREAD READ READ

READ READ …

READ READ READ READ

USING ATOMIC OPS

• CSNZI	 -	 Hierarchical	

• R:	 contention	 reduced,	 may	
increase	 latency	

• W:	 check	 one	 counter

COUNTER

READ

WRITE

READREADREAD READREAD

COUNTER COUNTER

COUNTER

USING ATOMIC OPS

• Ref	 Counter	 -	 1:1	

• R:	 No	 contention	

• W:	 check	 all	 counters

COUNTER

READ

WRITE

READREADREAD READ

COUNTER COUNTER

COUNTER COUNTER

WHAT IS FENCE

REMOVE FENCE

CPU0 CPU1 CPU2 CPU3

CACHE CACHE

CACHE SYSTEM

1
2

1

2

1.WRITE X
2.FENCE
3.READ Y

1.WRITE X
2.READ Y

1

2

LOCK WITH FENCE

CACHE CACHE

CACHE SYSTEM

1

2

1.R = 1
2.FENCE;
3.IF (W == 0)
4. ENTER CS
5.ELSE
6. WAIT

1.W = 1;
2.FENCE;
3.IF (R == 0)
4. ENTER CS
5.ELSE
6. …

1

R:1

2

W:0
W:1

R:1

CPU0 CPU1 CPU2 CPU3

INCONSISTENCY

PROBLEM WITHOUT FENCE

CACHE CACHE

CACHE SYSTEM

1 2

1.R = 1
2.IF (W == 0)
3. ENTER CS
4.ELSE
5. WAIT

1.W = 1;
2.FENCE;
3.IF (R == 0)
4. ENTER CS
5.ELSE
6. …

1
W:0

2

R:1

W:1

R:0

CPU0 CPU1 CPU2 CPU3

INCONSISTENCY

PROBLEM WITHOUT FENCE

CACHE CACHE

CACHE SYSTEM

1 2

1.R = 1
2.IF (W == 0)
3. ENTER CS
4.ELSE
5. WAIT

1.W = 1;
2.FENCE;
3.IF (R == 0)
4. ENTER CS
5.ELSE
6. …

1
W:0

2

R:1

W:1

R:0
WHEN DO WE ENSURE
READERS CAN SEE

W=1?

CPU0 CPU1 CPU2 CPU3

BOUNDED STALENESS

THINKING ON HARDWARE I

CACHE CACHE

CACHE SYSTEM
1 2

1

2

W:1

R:1

WATI FOR BS

THE WRITER WILL SEE THE READER

CPU0 CPU1 CPU2 CPU3

BOUNDED STALENESS

THINKING ON HARDWARE I

CACHE CACHE

CACHE SYSTEM

1 2

2

R:1

WATI FOR BS

THE READER WILL SEE THE WRITER

1

W:1

CPU0 CPU1 CPU2 CPU3

BIASED FENCE

THINKING ON HARDWARE II

• Target	 :	 the	 buffer	 of	 issued	 instructions	

• Light	 fence:	

• Async	 or	 Passively	 report	 the	 buffer	 info	

• Heavy	 fence:	

• Wait	 for	 remote	 cores’	 previously	 issued	 instructions	 committing

MONOTONE VERSION

SOLUTION ON SOFTWARE

READER WRITER

GLOBAL_CNT++

LOCAL_CNT SYNC

CHECK

READER

LOCAL_CNT SYNC

CHECK

MONOTONE VERSION

SOLUTION ON SOFTWARE

READER WRITER

GLOBAL_CNT++

LOCAL_CNT SYNC

CHECK

READER

LOCAL_CNT SYNC

CHECK

WHAT IF READERS HAVE NO CHANCE TO
SYNC

EVENTS & REDUCE EVENTS

SUPPLEMENT

• Event	

• IPI	

• Reducing	 Events	

• Domain

CPU0 CPU1 CPU2 CPU3

READ

READ

READ

UPDATE

IDLE/
OTHER

CONTEXTOTHER

IN
DOMAIN

OUT
DOMAIN

READ

IPIOTHER

IN
DOMAIN

PRCU SYNCHRONIZATION PHASES

CPU CPU CPU CPU CPU CPU CPU CPU CPU

INCREASE VERSION

CHECK VERSION

CPU CPU CPU CPU CPU CPU CPU CPU CPU

IPI

WAIT FOR LEAVING

P1

P2

P3

P4

SYNCHRONIZATION PHASES

CPU CPU CPU CPU CPU CPU CPU CPU CPU

INCREASE VERSION

CHECK VERSION

CPU CPU CPU CPU CPU CPU CPU CPU CPU

IPI

WAIT FOR LEAVING

P1

P2

P3

P4

No dependency: O(1) if hardware support

SYNCHRONIZATION PHASES

CPU CPU CPU CPU CPU CPU CPU CPU CPU

INCREASE VERSION

CHECK VERSION

CPU CPU CPU CPU CPU CPU CPU CPU CPU

IPI

WAIT FOR LEAVING

P1

P2

P3

P4

No fence: O(1) cache miss +
 O(N) instructions (1cycle on pipeline)

SYNCHRONIZATION PHASES

CPU CPU CPU CPU CPU CPU CPU CPU CPU

INCREASE VERSION

CHECK VERSION

CPU CPU CPU CPU CPU CPU CPU CPU CPU

IPI

WAIT FOR LEAVING

P1

P2

P3

P4

Software Limitation

CORRECTNESS

• Testing	

• Pass	 rcutorture(—torture	 rcu)	

• Formal	 Verification	

• Pass	 model	 checking

FORMAL VERIFICATION

• Tool	

• CBMC,	 https://github.com/diffblue/cbmc	

• Target	

• prcu_read_lock,	 prcu_read_unlock,	 synchronized_prcu	

• Hardware	

• 16	 cores,	 Intel	 Xeon	 CPU@2.4GHz,	 16G	 Memory	

• Configuration	

• 2	 reader	 threads	 +	 1	 writer	 thread	 +	 1	 main	 thread	 (+	 3	 interrupt	 threads)	

• safety	 +	 liveness	

• Memory	 model	 :	 SC,	 TSO,	 PSO

https://github.com/diffblue/cbmc

COMPARE WITH TREE RCU (LINUX 4.0.5)

PERFORMANCE
Sy

nc
 L

at
en

cy
 (

cy
cl

e)

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

core

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

10K 12K 13K 19K 28K

42,813K44,328K 47,861K 62,903K 71,832K

61K 60K 80K 123K 223K

PRCU RCU-expedited PRCU

SUMMARY

• Introduce	 a	 problem	 on	 reader-writer	 synchronization	

• A	 solution	 call	 PRCU	 which	 has	 low	 latency	 on	 ideal	 hardwares	

• Proof	 correctness	 with	 testing	 and	 formal	 verification	

• Code:	 https://github.com/lihao/linux-prcu

https://github.com/lihao/linux-prcu

THANKS

