
Kubernetes Autoscaling
on Azure

Pengfei Ni
Microsoft Azure



Abstract

• Why	autoscaling
• Autoscaling in	Kubernetes
• Practice	on	Azure
• Q&A



Why autoscaling

• Autoscaling
– Adjust	computational	resources	automatically

• Benefits
– Reduce cost
– Increase service availability
– Increase elasticity



Cloud provider autoscaling

• Horizontal
– Scale number of virtual machines

• Vertical
– Scale resources of virtual machines

• Drawbacks
– Not aware of Kubernetes scheduler (e.g. multiple 

node groups)
– May remove nodes with critical Pods
– Hard to conform kubernetes evictions



Autoscaling in Kubernetes

• Horizontal Pod autoscaler (HPA)
– Scale number of Pods

• Vertical Pod autoscaler (VPA)
– Scale resources of Pods

• Cluster proportional autoscaler (CPA)
– Scale replicas of Pods based on number of nodes

• Cluster autoscaler (CA)
– Scale number of nodes



Cluster Autoscaler

• Adjust number of Nodes automatically
– Add nodes when there’re Pods failed to schedule
– Remove nodes when they are underutilized for an 

extended period

• Supported Cloud providers
– Azure (VMAS/VMSS/AKS/ACS)
– AWS
– GCE/GKE



How CA works

Lead	Election

Metrics

Estimator

Expander

Cloud	Provider

SimulatorKubeClient

AWSAzure GCE



Scale Up

Pod Pod Pod Pod Pod

Pod

Pod Pod Pod Pod Pod

Pod

Pod Pod Pod Pod

Pod Pod Pod Pod



Scale Up

• Get node groups from cloud provider
• Build template nodes for each node groups
• Check Pods with unschedulable condition
• Check which template node fit the pending Pods

– If more than one node groups, select by expander
• random, most-pods, least-waste, price

• Create Node by cloud provider
• Wait for node ready



Scale Down

Pod Pod Pod Pod

Pod Pod Pod Pod

PodPod

Pod Pod
Pod Pod Pod Pod

Pod Pod Pod Pod



Scale Down

• Check unneeded nodes
– Sum of CPU/Memory requests is less than 50%
– All Pods on the node could be evicted

• Managed by controllers
• No restrictive PodDisruptionBudget
• No constraints (e.g. node selector) preventing node 

moving
– No scale down annotation

• Wait a while (e.g. 10 min)
• Evict, taint and then remove the node from cloud 

provider



Avoid abrupt scaling

• Mark node as unneeded and wait for a 
while (10 min) before removal

• Evict and taint node first before removal
• Stop scaling down for a while (10 min) 

after scaling up
• Stop operating when unready nodes are 

more than 45% or 3
• Use PodDisruptionBudget



Limitations

• Up to 1000 nodes are supported
• Up to 10 min graceful termination period
• Not compatible with cpu-metrics based 

autoscalers



Practice on Azure

• Container services on Azure
– AKS
– ACS
– Self hosted Kubernetes

• VM Type
– Availability Set (VMAS)
– Scale Set (VMSS)

Self	hosted	
Kubernetes

VMAS

AKS ACS

VMSS



VMAS/VMSS

VMSS VMAS

VM	configuration Identical Usually different

VM	creation Automated Manually

Load	Balancer Automated	with	ALB Manually

Scaling Automated Manually

High	Availability Auto	distribution	across	
availability	zones	or	
availability	sets

Isolated	hardware,	
manually	setup	
availability	zones



VMAS/VMSS

cluster-autoscaler

VMSS	API

VMAS

Azure	ARM	API

VM VMSSVMVM
VMVMVM



AKS/ACS

• Managed Kubernetes cluster
• No charge of controller plane
• ACS will be deprecated
• AKS is highly recommended
• Easily setup

– az aks create
– az aks upgrade
– az aks scale

cluster-autoscaler

AKS	API

AKS ACS

ACS	API



Best Practices

• Run cluster-autoscaler with matched k8s version
• Run containers with multiple replicas
• Setup resource requests for containers
• Use PodDisruptionBudgets to prevent Pods 

being removed abruptly 
• Do not manage node manually
• Disable other virtual machine autoscalers (e.g. 

those from cloud provider) 
• Setup min/max nodes and ensure quota 

sufficient



Thanks
Q&A


