
edgexfoundry.org | @edgexfoundry

A Microservice Approach to IoT

Edge Computing

Jim White - Dell Technologies
• May 2018

edgexfoundry.org | @edgexfoundry

Agenda

• The inherent challenges of IoT

• Introduce EdgeX – a microservice architecture for the edge

• Addressing 5 key challenges of the edge & how microservices help

• Microservices no silver bullet – challenges microservice architecture
bring

• Resource list for more info, call to action

edgexfoundry.org | @edgexfoundry

Who is this guy?

• Jim White
• Dell Technologies IoT Solutions Division – Distinguished Engineer

• Team Lead of the IoT Platform Development Team

• Chief architect and lead developer of Project Fuse
• Dell’s original IoT platform project that became EdgeX Foundry

• Yes – I wrote the first line(s) of code for EdgeX (apologies in advance)

• EdgeX Foundry …
• Technical Steering Committee member

• Ad hoc and unofficial lead architect

edgexfoundry.org | @edgexfoundry

edgexfoundry.org | @edgexfoundry

Why is IoT hard to do?
• Heterogeneity of platforms

• Diverse collection of OS and OS variants
• Linux, Unix, Windows, VxWorks, embedded and RTOS, …

• Various Hardware (Intel, AMD, ARM,…)

• Cloud, gateway, smart thing (the “Fog continuum”)

• Thing protocol soup

• Industrial: BACNet, Modbus, OPC-UA,…

• Wireless: BLE, Z-Wave, Zigbee,…

• Message: MQTT, AMQP, DDS, …

• Variety of cloud platforms

• Azure IoT Hub, AWS IoT Platform, Google IoT Core, IBM Watson IoT Platform, …

• Add your favorite selection of…

• Applications, edge analytics/intelligence, security, system management, …

• Difficulties in determining where to start

IoT is a post doctorate in all we know and have
done in computing for the last 30-40 years

• Networks/protocols
• Mobile computing
• Distributed compute
• Cloud compute
• AI/Machine learning
• …

edgexfoundry.org | @edgexfoundry

Introducing EdgeX Foundry

• An open source, vendor neutral project (and ecosystem)

• A microservice, loosely coupled software framework for IoT edge computing

• Hardware and OS agnostic
• Remain agnostic with regard to microservice implementation

• Many of the microservices were in Java and are now in Go

• C/C++ is envisioned for south side connectors and to address real time needs

• JavaScript for UI

• Goal: enable and encourage growth in IoT solutions
• The community builds and maintains common building blocks and APIs

• Plenty of room for adding value and getting a return on investment

• Allowing best-of-breed solutions

edgexfoundry.org | @edgexfoundry

A Brief EdgeX History

• Chartered by Dell IoT marketing in July 2015

• A Dell Client CTO incubation project (Project Fuse)

• Designed to meet interoperable and connectivity concerns at the IoT edge

• Started with over 125,000 lines of Dell code

• Entered into open source through the Linux Foundation on April 24, 2017

• Started with nearly 50 founding member organizations; today we have more than 75

• Release Cadence: 2 formal releases a year

2017 2018 2019

Oct Nov Dec Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Jan Feb Mar Apr

‘Barcelona’ Release

(Released Oct 20 2017)

‘California’ Release

(June 2018)

‘Delhi’ Release

(Oct 2018)

‘Edinburgh’ Release

(Apr 2019)

https://wiki.edgexfoundry.org/display/FA/Barcelona+Release
https://wiki.edgexfoundry.org/display/FA/California+Release
https://wiki.edgexfoundry.org/display/FA/Delhi+Release
https://wiki.edgexfoundry.org/display/FA/Delhi+Release

edgexfoundry.org | @edgexfoundry

Disclaimer

• I am not here to sell you on EdgeX Foundry (the product or org)
• Although that would be a nice by-product 

• I am here to present a microservice based solution to solve some of
the more challenging IoT problems

• The EdgeX implementation helps to demonstrate (validate?) the concept

• Consider the architecture in your decision making

• Use our lessons learned where you can

• Replicate/duplicate if you must

• Join us if you can

• If you think the approach correct and you don’t feel like starting from scratch

edgexfoundry.org | @edgexfoundry

EdgeX Primer - How it works

• A collection of a dozen+ microservices
• Written in multiple languages (Java, Go, C, … we are polyglot believers!!)

• Several commonly used library projects (common domain objects, client libraries, etc.)

• EdgeX data flow:
• Sensor data is collected by a Device Service from a thing

• Data is passed to the Core Services for local persistence

• Data is then passed to Export Services for transformation, formatting, filtering and can then be sent “north” to
enterprise/cloud systems

• Data is then available for edge analysis and can trigger device actuation through Command service

• REST communications between the service
• Some services exchange data via message bus (core data to export services and rules engine)

• Microservices are deployed via Docker and Docker Compose

It’s 102◦c

Cloud, Enterprise,
On-Prem…

Stop the machine

Local Analytics

edgexfoundry.org | @edgexfoundry

Performance Targets

• The target is to run all of EdgeX on a Raspberry Pi 3 type of device
• 1 GB RAM, 64bit CPU, at least 32GB storage space

• Additional “developer community” targets

• Startup in 1 minute or less (post OS boot)

• Latency for one piece of data from data ingestion to actuation will be < 1 second

• Remaining OS and Hardware agnostic
• Windows, Linux, *nix, …

• Intel/Arm 64/Arm 32

edgexfoundry.org | @edgexfoundry

The Challenges of IoT

• #1 Dealing with the diversity

• Dealing with the diversity of device connectivity protocols

• Working with multiple cloud and enterprise systems

• Dealing with multiple IoT data models and data formats

• #2 Incorporating any analytics package

• #3 Allowing for the continual improvements and upgrades of parts of the IoT solution

• #4 Respond to evolving business needs and technological advancements (how to make a ROI
in IoT)

• #5 Addressing limited resources in an IoT environment

edgexfoundry.org | @edgexfoundry

Problem 1: protocols, models, and formats

• IoT is inherently a multi-transform problem

• Communicating across multiple protocols, using different data models and
formats (JSON, XML, etc.)

• From “thing” to edge platform (like a gateway)

• From edge to application layer or cloud

• Sometimes from thing to cloud

• To/from analytics applications

Sensor
Gateway

Apps

CloudGateway

Sensor
Cloud

AnalyticsGateway

edgexfoundry.org | @edgexfoundry

Transformation on the “South Side”

• The world of OT protocol soup

• Modbus, BACNet, Profibus, CANBus, OPC-UA…

• Consumer and traditional IT protocols are also entering the mix

• BLE, Zigbee, ZWave, MQTT, SNMP, …

• New “things” & protocols are being added all the time

• You can never keep up with them all

• EdgeX Device Services transform from “thing” protocols and data to common
Core Data (micro) Service

edgexfoundry.org | @edgexfoundry

Device Services

Device Service
(per protocol)

Sensor

Driver

Sensor/Device
Protocol

Core CommandCore Data

REST/JSON

SDK

edgexfoundry.org | @edgexfoundry

Transformation on the “North Side”

• North side endpoints need data…
• Filtered

• Transformed (data model of choice)

• Enriched (add device metadata, location, etc.)

• Formatted (XML, JSON, CSV, …)

• Compressed, Encrypted, etc.

• This is classic EAI (enterprise application integration)
• aka pipe & filter architecture

• EdgeX Export Services take the data from Core Data and get it to the applications/cloud

edgexfoundry.org | @edgexfoundry

Export Services

Core Data

Export Client

Export Distro

XML

JSON

CSV

Compress Encrypt

HTTP(s)
endpoint

MQTT(s)
endpoint

0MQ
endpoint

Azure IoT
Hub

Google
IoT Core

Filter(s)

Google IoT CoreAzure IoT Hub

edgexfoundry.org | @edgexfoundry

Problem 2: edge analytics

• Intelligence or analytics at the edge is critical

• It’s too expense to transport all the data “north”

• It’s too expense to store all the data “north”

• It’s too late to react to a problem from the cloud

• Your devices/sensors are not always connected to the “north”

• How smart does your edge platform need to be?

• Simple rule engine smart?

• Complex event process (CEP) smart?

• Machine learning/AI smart?

• The edge platform must be flexible enough to incorporate different capability

• EdgeX’s analytic service can wrap and isolate the edge analytic capability

edgexfoundry.org | @edgexfoundry

Rules Engine Service

EdgeX Reference Implementation 3rd Party Value Add

Core Data

Export Client

Core Command

Export Distro

Rules Engine

Device Service

REST/JSON

Format/
model as
required

Core Data

Export Client

Core Command

Export Distro

Edge Intelligence

Device Service

REST/JSON

Format/
model as
required

edgexfoundry.org | @edgexfoundry

Problem 3: Fast Continual Improvements

• Microservice architecture allows for continual improvements, future break throughs

• Ex: device services that do their own device discovery

• Ex: streaming analytics over core data/analytics services

• Upgrades to microservices without impact to others

• Example: upgraded the config/registry service that used Consul 0.8 to Consul 1.0

• Improve performance over time, so they fit on more constrained devices

• Ex: Moving from Java to Go for massive performance and footprint improvements

• Grow them over time and distribute/migrate them to the cloud

• Ex: Machine Learning analytic services with a local edge agent

• Promote best of breed solutions

• Allow specialization to occur

edgexfoundry.org | @edgexfoundry

Problem 4: Differentiation and Value Add

• EdgeX was created with commercialization in mind!!!

• Allow for value additions

• RedHat style commercial support packages (IoTech)

• Improved data synchronization between edge and cloud (MongoDB)

• Edge analytics customized for the vertical or use case (many orgs)

• Security features to protect trust devices, secure the data, etc. (RSA)

• Allow for low/no value commodity to be taken care of by a community

• Ex: open logging probably suffices for a large part of the user base

• Allow specialization to demand higher price

• Ex: IoTech creating a real time extension on the south side for embedded systems

• Ex: Aicas using Jamaica and other technologies to run faster/smaller Java microservices

• Provide incentive to commercial (even competing) companies and reason to support an open source
effort

edgexfoundry.org | @edgexfoundry

Problem 5: How to maximize the use of resources

• From sensor to cloud, there exist a continuum of
• Compute

• Storage

• Networking/connectivity

• Management

• Security

• How can all these resources be maximized?
• Sensors will get more compute and storage

• Pipes to the cloud may get bigger

edgexfoundry.org | @edgexfoundry

Microservice Distribution

• Microservices can live where they can get the resources they need

• With a tendency to push to the south
• Latency needs

• Storage and transportation costs

• Disconnected modes

• Allow the microservices to adapt to the use case

• Requires extremely loose coupling

• In some uses, microservices might be collapsed or combined

edgexfoundry.org | @edgexfoundry

EdgeX Flexible Deployment Possibilities

24

Fog Server

Cloud

Gateway

Gateway

Device
Service

Export
Services

Cloud

Device
Service

Device
Service

Core
Services

Export
Services

Analytics

Core
Services

Export
Services

Analytics

Device
Service

Core
Services Analytics

Cloud

Embedded
Device Services

Fog Server

Core
Services

Export
Services

Analytics

Cloud

edgexfoundry.org | @edgexfoundry

Microservices challenges

• Microservices offers aid to addressing some of the significant IoT issues
• A microservices architecture inherently introduces challenges

• Performance
• More microservices = more communications

• More communications = more latency concerns

• Orchestration
• Deploying microservices (especially when distributed across platforms)

• Managing/updating microservices

• Configuring (how to provide platform dependent/environmentally dependent configuration to each service)

• Registering (how does one service know where to go to get another service)

• Getting status/health (where microservices are dependent on one another, how do you know a microservice is up
and ok)

• More points of failure

• Security – more interfaces and endpoints to secure

edgexfoundry.org | @edgexfoundry

Addressing Microservice Challenges

• Performance

• Combined/collapsed services on occasion

• Real time versions or components are being developed (IoTech EdgeX RT)

• A bevy of products can help with deployment and orchestration

• Docker, Compose, Snappy, Kubernetes, Mesos, Swarm, …

• Combine some services to reduce points of failure

• Security services offer some of the most opportunity for 3rd party value add

• Ex: take advantage of hardware root of trust

• Ex: distributed ledgers/blockchain

• Cloud and system management tools have addressed many of the points of failure issues

• Provides many know solutions to take advantage of

edgexfoundry.org | @edgexfoundry

Now Backed by 70+ Members

With more in process!

edgexfoundry.org | @edgexfoundry

Current Status
• EdgeX California Release on track for release at the end of June 2018. Key features include:

• Initial security building blocks (reverse proxy, secure store)

• Most services transitioned from Java to Go (exception: device services and SDK)

• Dramatically improved performance, resource usage, and footprint (~7x reduction in size)

• Already hitting our system performance targets

• Additional “northbound” connectors

• Improved documentation (documentation treated more like code in its management)

• Arm 64 support

• Blackbox testing for all services

• Improved continuous integration

• Technical Steering Committee meet in Palo Alto, June 4-6

• Scoped next release (code named Delhi) due Oct 2018

• Roadmapped future releases (Edinburgh – Apr 2019, Fuji – Oct 2019)

• Current membership: ~70 companies/organizations

• Code contributions from ~40 developers

edgexfoundry.org | @edgexfoundry

EdgeX Releases

2017 2018 2019

Oct Nov Dec Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec

‘Barcelona’ Release

(Released Oct 20 2017)

• Improved fit and finish,
formalized Core Service
APIs, additional Device
and Export Services, test
apparatus

‘California’ Release

(Released June 2018)

• First integration of
security

• Run in < 1 GB RAM,
come up in < 30 sec,
< 1 second actuation
latency

‘California Preview’

(Made available Jan 2018)

• Drop-in Go Lang
microservice
replacements
demonstrating
reduced footprint
and higher
performance

‘Delhi’ Release

(Oct 2018)

• Additional security and
first manageability
capabilities

• Go / C device service
SDKs

• EdgeX UI

‘Edinburgh’ Release

(Apr 2019)

• Certification Program

• Improved and more
scalable northbound
connectors

• Southbound
connectors to
common protocol
devices

• ARM 32 support

‘Fuji’ Release

(Oct 2019)

• Load balancing

• Multi-host EdgeX

• Additional security
and system
management
capability

https://wiki.edgexfoundry.org/display/FA/Barcelona+Release
https://wiki.edgexfoundry.org/display/FA/California+Release
https://wiki.edgexfoundry.org/display/FA/Delhi+Release
https://wiki.edgexfoundry.org/display/FA/Delhi+Release
https://wiki.edgexfoundry.org/display/FA/Delhi+Release

edgexfoundry.org | @edgexfoundry

Delhi Major Themes & Objectives

• Smaller development cycle (due to California length) so scope has to match

• High level scope
• Initial System Management APIs and agent

• Device Service SDKs (Go/C) & at least one example device service

• The next wave of security features

• Access control lists to grant access to appropriate services, and improved security service bootstrapping

• Improve testing

• Better/more unit, complete black box and add performance testing

• Refactored and improved Go Lang microservices

• Design and architecture work in advance of Edinburgh release

• Options and implementation plan for database replacement

• Design and implementation plans for export service replacement with application services

• An EdgeX UI suitable for demos and smaller installations

edgexfoundry.org | @edgexfoundry

Call to action

• We could use your help!

• There are plenty of places to contribute to EdgeX
• Additional southside connectivity

• Additional northside connectivity

• Replacement and refactor work

• Security & microservice management work

• Checkout Github Issues and our roadmap for more

edgexfoundry.org | @edgexfoundry

Key Project Links

• Access the code:
• https://github.com/edgexfoundry

• Access the technical documentation:
• https://wiki.edgexfoundry.org

• EdgeX Blog:
• https://www.edgexfoundry.org/news/blog/

• Join an email distribution:
• https://lists.edgexfoundry.org/mailman/listinfo

• Join the Rocket Chat:
• https://chat.edgexfoundry.org/home

32

https://github.com/edgexfoundry
https://wiki.edgexfoundry.org/
https://www.edgexfoundry.org/news/blog/
https://lists.edgexfoundry.org/mailman/listinfo
https://chat.edgexfoundry.org/home

edgexfoundry.org | @edgexfoundry

Thanks!

james_white2@dell.com

