
Device Assignment with
Nested Guests and DPDK

Peter Xu <peterx@redhat.com>
Red Hat Virtualization Team

Device Assignment with Nested Guests and DPDK2

Agenda

• Backgrounds
• Problems

• Unsafe userspace device drivers
• Nested device assignments

• Solution
• Status updates, known issues

Backgrounds

Device Assignment with Nested Guests and DPDK4

Backgrounds

• What is this talk about
• DMA of assigned devices (nothing about

configuration spaces, IRQs, MMIOs...), and...
• vIOMMU!

• What is vIOMMU?
• IOMMU is “MMU for I/O”
• vIOMMU is the emulated IOMMU in the guests

• What is device assignment?
• The fastest device (always) to do IOs in the guest!

(at least when without a vIOMMU in the guest...)

Device Assignment with Nested Guests and DPDK5

QEMU, Device Assignment
& vIOMMU

• QEMU had device assignment since 2012

• QEMU had vIOMMU emulation (VT-d) since 2014

• Emulated devices are supported by vIOMMU
• Using QEMU’s memory API when DMA

• DMA happens with QEMU’s awareness

• Either full-emulated, or para-virtualized (vhost is special!)

• Assigned devices are not supported by vIOMMU
• Bypassing QEMU’s memory API when DMA

• DMA happens without QEMU’s awareness

• Need to talk to host IOMMU for that

• Why bother?

The Problems (Why?)

Device Assignment with Nested Guests and DPDK7

Problem 1: Userspace Drivers

• More userspace drivers!
• DPDK/SPDK use PMDs to drive devices

• Userspace processes are not trusted
• Processes can try to access any memory
• Kernel protects against malicious memory access

using MMU (until we have Meltdown and Spectre…)
• Userspace device drivers are not trusted too!

• Userspace drivers control devices, bypassing MMU
• Need to protect the system on the device’s side

Device Assignment with Nested Guests and DPDK8

Userspace Drivers:
MMU Protection

Process A Process B Process C

MMU

Memory (safe)

Allowed Allowed
Denied
Illegal Access

Device Assignment with Nested Guests and DPDK9

Userspace Drivers:
Bypass MMU Protection

Process A Process B Process C

MMU

Memory (unsafe)

Allowed Allowed

Device

Illegal
Access

Device Assignment with Nested Guests and DPDK10

Userspace Drivers:
MMU and IOMMU

Process A Process B Process C

MMU

Memory (safe)

Allowed Allowed

Device

Denied

IOMMU

Illegal
Access

Device Assignment with Nested Guests and DPDK11

Problem 2:
Nested Device Assignments

• Terms:
• HPA: Host Physical Address

• LnGPA: nth-level Guest Physical Address

• How device assignment works

• Maps L1GPA → HPA (L1 guest is unaware of this)

• Can device assignment be nested?

• What we want in the end: L2GPA → HPA

• What we have already: L1GPA → HPA

• Can’t do this without an IOMMU in L1 guest (L2GPA → L1GPA)!

Device Assignment with Nested Guests and DPDK12

Problem 2:
Nested Device Assignments

Host
Memory

Host IOMMU

VFIO driver

L1 Guest
Memory

L1 Guest IOMMU

PCI Device

PCI Device

VFIO driver

L2 Guest
Memory

PCI Device

Host

L1 Guest

L2 Guest

Provides L2GPA -> L1GPA
Mapping

Provides L1GPA -> HPA
Mapping

Device Assignment with Nested Guests and DPDK13

Summary of Problems

• Unsafe userspace device drivers:

• needs IOMMU in L1 guest to protect L1 guest kernel from
malicious/buggy userspace drivers

• Nested device assignments:

• needs IOMMU in L1 guest to provide the L2GPA to L1GPA
mapping, finally to HPA

• We want device assignment to work under vIOMMU in the
guests

The Solution (How?)

Device Assignment with Nested Guests and DPDK15

Guest DMA for Emulated
Devices, no vIOMMU

vCPU

Emulated
Device

(e1000/virtio)

Guest
Memory

QEMU

Guest

Memory
Core API

(1)

(2)

(3)

(1) IO Request
(2) Allocate DMA buffer
(3) DMA request (GPA)
(4) Memory access (GPA)

(4)

Device Assignment with Nested Guests and DPDK16

Guest DMA for Emulated
Devices, with vIOMMU

vCPU

Emulated
Device

(e1000/virtio)

QEMU

Guest

Memory
Core API

(1)

(2)

vIOMMU

Guest
Memory

(3)(6)

(4)

(5)

(7)

(1) IO request
(2) Allocate DMA buffer, setup
device page table (IOVA->GPA)
(3) DMA request (IOVA)
(4) Page translation request (IOVA)
(5) Lookup device page table (IOVA->GPA)
(6) Get translation result (GPA)
(7) Complete translation request (GPA)
(8) Memory access (GPA)

(8)

Device Assignment with Nested Guests and DPDK17

Guest DMA for Assigned
Devices, no vIOMMU

vCPU

Assigned PCI
Device

QEMU

Guest

Memory
Core API

(1)

(2)Guest
Memory

(3)

(1) IO request
(2) Allocate DMA buffer
(3) Virtual DMA request (using GPA)
(4) DMA request (using GPA)
(5) Memory access (using HPA)

Assigned PCI
Device

IOMMU
(4)

(5)

Device Page Table
(GPA->HPA)

Device Assignment with Nested Guests and DPDK18

Guest DMA for Assigned
Devices, with vIOMMU

vCPU

Assigned PCI
Device

QEMU

Guest

Memory
Core API

(1)

(2)Guest
Memory

(3)

(1) IO request
(2) Allocate DMA buffer, setup
device page table (IOVA->GPA)
(3) Send MAP notification
(4) Sync shadow page table (IOVA->HPA)
(5) Sync Complete
(6) MAP notification Complete
(7) Virtual DMA request (using IOVA)
(8) DMA request (using IOVA)
(9) Memory access (using HPA)

Assigned PCI
Device

IOMMU

(7)vIOMMU

(4)

(8)

(9)

Device Shadow Page Table
(IOVA->HPA)

(5)

(6)

Device Assignment with Nested Guests and DPDK19

IOMMU Shadow Page Table
Hardware IOMMU page tables without/with a vIOMMU in the guests
(GPA→HPA is the original page table; IOVA→HPA is the shadow page table)

HPA

HPA

HPA

...

HPA

HPA

HPA

HPA

HPA

HPA

HPA

...

HPA

HPA

HPA

HPA

Device Page Table
Root Pointer
(GPA->HPA)

GPA[31:22] GPA[21:12] GPA[11:0]

DATA

DATA

DATA

...

DATA

DATA

DATA

DATA

HPA

HPA

HPA

...

HPA

HPA

HPA

HPA

HPA

HPA

HPA

...

HPA

HPA

HPA

HPA

Device Shadow Page
Table Root Pointer
(IOVA->HPA)

IOVA[31:22] IOVA[21:12] IOVA[11:0]

DATA

DATA

DATA

...

DATA

DATA

DATA

DATA

Without vIOMMU:
GPA->HPA

With vIOMMU:
IOVA->HPA

Device Assignment with Nested Guests and DPDK20

Shadow Page Synchronization

• General solution:
• Write-protect the whole device page table?

• Actual solution:
• VT-d caching-mode: Any page entry update will require explicit

invalidation of caches (VT-d spec chapter 6.1)

• Intel only solution; PV-like, but also applies to hardware
(Is there real hardware that declares caching-mode?)

• Maybe it could be nicer if…?

• Each invalidation can be marked as MAP or UNMAP

• Invalidation range can be strict for MAPs

Device Assignment with Nested Guests and DPDK21

Shadow Page Table:
MMU vs. IOMMU

Type MMU IOMMU

Target Processor memory
accesses

Device memory
accesses (DMA)

Trigger mode
(shadow sync) #PF (Page Faults) Caching mode (PV?)

Code path
(shadow sync)

Short
(KVM only)

Long
(We’ll see...)

Page table
formats

32-bits, 64-bits,
PAE... 64-bits only

Need previous
state? No Yes (cares more about page

changes[1])
Page faults? Yes No (not yet?)

[1]: Converts new/deleted pages into MAP/UNMAP notifies downwards. A funny fact is that we can’t
really “modify” an IOMMU page table entry since we don’t normally have a modify API along the way
(Please refer to VFIO_IOMMU_[UN]MAP_DMA in VFIO API, or iommu_[un]map() in kernel API)

Device Assignment with Nested Guests and DPDK22

Some Facts...

• Emulated devices vs. Assigned devices
• Emulated: quick mappings, slow IOs

• Assigned: slow mappings, quick IOs

• Performance (assigned devices + vIOMMU, 10gbps NIC)
• Kernel drivers are slow (>80% degradation)

• DPDK drivers are as fast as when without vIOMMU

• Both L1/L2 guests performances close to line speed

• What matters: whether the mapping is static

• Long code path on shadow page synchronization
• Reduce context switches? “Yet-Another vhost(-iommu)”?

• “How long?” Please see the next slide...

Device Assignment with Nested Guests and DPDK23

“How Long?”
(Example: when L2 guest maps one page)

L2 Guest

IOMMU Driver

KVM

QEMU (L2 instance)

vIOMMU

VFIO

QEMU (L1 instance)

L1 Kernel

KVM

Host Kernel

vIOMMU

VFIO

IOMMU Driver

IOMMU Driver

Host IOMMU

Status Update

Device Assignment with Nested Guests and DPDK25

Status and Update

• QEMU
• QEMU 2.12 provided initial support for device assignment with

vIOMMU, QEMU 2.13 (3.0) contains some important bug fixes

• Please use QEMU 2.13 (3.0) or newer

• Linux
• Linux v4.18 contains a very critical bug fix: 87684fd997a6

• Please use v4.18-rc1 or newer

• For more information about VT-d emulation on QEMU,
please refer to:

• https://wiki.qemu.org/Features/VT-d

https://wiki.qemu.org/Features/VT-d

Device Assignment with Nested Guests and DPDK26

Known Issues

• Extremely bad performance for dynamical mapping DMA

• >80% performance drop for kernel drivers

• DPDK applications are not affected

• Limitation on assigning multiple functions that share a single
IOMMU group in the host (when vIOMMU exists)

• Currently only allow to assign a single function if multiple
functions are sharing the same IOMMU group on the host

facebook.com/redhatinc

twitter.com/RedHat

plus.google.com/+RedHat

youtube.com/user/RedHatVideos

linkedin.com/company/red-hat

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

