
Bcache Stability
Improvement for Cloud Infrastructure

Coly Li
Software Engineer

SUSE Labs

Junhui Tang
Software Engineer

ZTE



About Speakers

Coly Li
• Software Engineer, SUSE Labs
• Maintains md/dm/bcache for SUSE Linux
• Bcache maintainer upstream Linux kernel
Junhui Tang
• Software Engineer, ZTE
• Maintains bcache for ZTE storage products
• Active developer and important contributor to 

bcache of upstream Linux kernel



Bcache Overview

A high performance block layer cache, exists in 
Linux kernel for 5+ years.

Originally developed by Kent Overstreet, and 
merged into Linux v3.10.

Widely deployed in industry (virtualization, data 
base, software define storage, etc) everywhere hot 
data can be accelerated.



Brief Design

• Storage space allocated in buckets
• Cache indexed by B+ tree, in-memory binary search

tree used within each B+ tree node

All the above charts copied fromHua Rui <huarui@szsandstone.com>, ”Practices for accelerating Ceph OSD with bcache”



Improvement required by Industry

• Device failure handling
• Writeback performance
• I/O latency in worst case
• Stability, don’t lock, don’t panic

Many development and improvement take place in
the past 2 years.



Device Failure Handling

• Potential data corruption if device failure is not 
handled properly

– Broken cache device
– Broken backing device

• Backing device gone without I/O

• Linux v4.18 has fundamental device failure 
handling for bcache

– Fix many bugs for dependences of multiple reference counters
– Retire cache set for broken cache
– Stop bcache device for broken cache
– Stop bcache device for broken backing device



Writeback Performance

• Dirty blocks on cache device are mostly randomly 
distributed on backing device.

• Write them back to spindle hard drive results 
unhappy performance (40~400KB/s)

• Even worse on SMR (Shingled Magnetic Recording) 
hard drives

• Michael Lyle makes situation better by re-ordering 
write requests before issuing to backing device.

• Throughput improved 3+ times for ideal conditions.



I/O latency in Worst Case

• There are multiple threads to access B+ tree in 
parallel

– Writeback
– Garbage collection
– Data insert/invalidate/replacement

• Lock contention
• Dependency loop between B+ tree and journal

• Junhui Tang from ZTE contributes a lot of fixes to 
make things much better

– Reduce worst latency from 120+ seconds to ~200ms
– Well done!



Stability, don’t lock, don’t panic

• Deadlock on cache retire code path
• Panic of NULL pointer deference of gone struct 

block_device *bdev.
• Dependence circle within multiple locks among 

multiple threads

Almost all reported issues are fixed, bcache code 
in Linux v4.18 has improved stability with better 
overall performance.



Stable for Cloud Infrastructure

Positive feedback from industry partners and 
community,
• Virtualization
• Software Defined Storage
• Hyper-converged Infrastructure

Bcache is stable to I/O cache acceleration for your 
large scale could infrastructure.

Full enterprise production support from SUSE Linux 
Enterprise Sever 12 and 15.



Credit to Bcache Developers

Kent Overstreet (164)
Coly Li (26)
Tang Junhui (24)
Michael Lyle (13)

Slava Pestov (12)
Nicholas Swenson (10)
Bart Van Assche (9)
Jens Axboe (7)
Christoph Hellwig (7)
Eric Wheeler (7)
Yijing Wang (5)
Gabriel de Perthuis (5)

Liang Chen (2)
Jan Kara (2)
Al Viro (2)
Mike Snitzer (2)

Wei Yongjun (1)
Zhai Zhaoxuan (1)
Jianjian Huo (1)
Gu Zheng (1)
Guoqing Jiang (1)
Greg Kroah-Hartman (1)
Chengguang Xu (1)

Kees Cook (5)
Ming Lei (5)
Ingo Molnar (4)
Mike Christie (4)

Andy Shevchenko (3)
Zheng Liu (3)
Dan Carpenter (3)
Jiri Kosina (3)
NeilBrown (3)
Surbhi Palande (2)
Rui Hua (2)
Michal Hocko (2)

Incomplete contributors list since Linux v3.10:



Development Roadmap

• Big endian support

• Reduce lock contention on B+ btree iteration
• User space tool enhancement

• SMR & 4K native hard drive support

We have active developers and users community, 
wildly used in cloud industry. Welcome to join us 
for a better block layer cache!

linux-bcache@vger.kernel.org

mailto:linux-bcache@vger.kernel.org


Q & A




