
Accelerating NVMe I/Os in Virtual Machines

via SPDK vhost

Ziye Yang, Changpeng Liu

Senior software Engineer

Intel

Notices & Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete
information about performance and benchmark results, visit http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information
visit http://www.intel.com/benchmarks .

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation
of these updates may make these results inapplicable to your device or system.

Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a)
some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending
on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,
and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

© 2018 Intel Corporation.
Intel, the Intel logo, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as property of others.

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/go/turbo

Agenda

• Background

• SPDK vhost solution

• Experiments

• Conclusion

Background

NVMe & virtualization

• NVMe specification enables highly
optimized drives (e.g., NVMe SSD)

– For example, multiple I/O queues allows lockless
submission from CPU cores in parallel

• However, even the best kernel mode
drivers have non-trivial software overhead

– Long I/O stack in kernel with resource contention

• Virtualization adds additional overhead
– Long I/O stack in both guest OS kernel and host OS

kernel

– Context switch overhead (e.g., VM_EXIT caused by
I/O interrupt in guest OS)

What is in QEMU’s solution?

• The solution in QEMU to virtualize NVMe
device:

• Virtio virtualization

• NVMe controller virtualization

• Hardware assisted virtualization

• Virtio virtualization
– Virtio SCSI/block Controllers

• NVMe controller virtualization
– QEMU emulated NVMe Device (file based NVMe

backend)

– QEMU NVMe Block Driver based on VFIO (exclusive
access by QEMU)

Background: What is in QEMU

• Paravirtualized driver
specification

• Common mechanisms
and layouts for device
discovery, I/O queues,
etc.

• virtio device types
include:
• virtio-net

• virtio-blk

• virtio-scsi

• virtio-gpu

• virtio-rng

• virtio-cryptoHypervisor (i.e. QEMU/KVM)

Guest VM
(Linux*, Windows*, FreeBSD*, etc.)

virtio front-end drivers

virtio back-end drivers

device emulation

virtqueuevirtqueuevirtqueue

Accelerate virtio via vhost target

vhost target
(kernel or userspace)

• Separate process for
I/O processing

• vhost protocol for
communicating guest
VM parameters
• memory

• number of virtqueues

• virtqueue locations

Hypervisor (i.e. QEMU/KVM)

Guest VM
(Linux*, Windows*, FreeBSD*, etc.)

virtio front-end drivers

Device
emulation

virtio back-enddrivers

virtqueuevirtqueuevirtqueue

vhostvhost

SPDK vhost solution

What is SPDK?

Storage
Performance

Development
Kit

10

Scalable and Efficient Software Ingredients

• User space, lockless, polled-mode components

• Up to millions of IOPS per core

• Designed for Intel Optane™ technology latencies

Intel® Platform Storage Reference Architecture

• Optimized for Intel platform characteristics

• Open source building blocks (BSD licensed)

• Available via github.com/spdk or spdk.io

SPDK architecture

Drivers

Storage
Services

Storage
Protocols

iSCSI
Target

NVMe-oF*
Target

SCSI

vhost-scsi
Target

NVMe

NVMe Devices

Blobstore

NVMe-oF*

Initiator

Intel® QuickData
Technology Driver

Block Device Abstraction (BDEV)

Linux
AIO

3rd Party

NVMe

NVMe* PCIe
Driver

18.01 Release

vhost-
blk

Target

BlobFS

Integration

Core
Application
Framework

QEMU

18.04 Release 18.07 Release

Ceph

RocksDB

VPP TCP/IP

Cinder

vhost-
NVMe
Target

RDMA

TCP

Linux
nbd

Ceph
RBD

PMDK
blk

Virtio
SCSI

Virtio
Blk

iSCSI
initiator

Logical
Volumes

Qos

snapshots
clones GPT DPDK

Encryption

RDMA

TCP OCSSD

Combine virtio and NVMe to inform

a uniform SPDK vhost solution

Host Memory

QEMU

Guest VM
Virtio

Controller

Shared Guest VM
Memory

SPDK vhost

vhost DPDK vhost

virtio

virtqueuevirtqueuevirtqueue

UNIX domain
socket

eventfd

Host Memory

QEMU

Guest VM
NVMe

Controller

Shared Guest VM
Memory

SPDK vhost

vhost DPDK vhost

NVMe

UNIX domain
socket

eventfd

sq cq

Virtio VS NVMe

13

Submission QueueAvailable Ring

TAILAvailable Index

Both Use Ring Data
Structures for IO

Virtio-SCSI and NVMe protocol

format comparison

ADDR

LEN

FLAGS

NEXT

SCSI_REQ

ADDR

LEN

FLAGS

NEXT

DATA

ADDR

LEN

FLAGS

NEXT

SCSI_RSP

NVMe_Req

NVMe_Rsp

DATA

(16 * 3 + SCSI_Req + SCSI_Rsp + Data) Bytes
(NVMe_Req + Data +

NVMe_Rsp) Bytes

SPDK vhost architecture

QEMU Guest 1

Vhost SCSI Driver

Vhost BLK Driver

Vhost NVMe Driver

Kernel

kvm

Virtio SCSI
Controller

Guest 2

Virtio BLK
Controller

Guest 3

NVMe
Controller

SPDK vhost Target

SCSI BLK NVMe

BDEV

QEMU Released

Separate Patch for QEMU

Comparison of known solutions

QEMU
Emulated
NVMe device

QEMU VFIO
Based solution

SPDK
Vhost-SCSI

SPDK
Vhost-BLK

SPDK
Vhost-NVMe

Guest OS
driver
Interface

NVMe NVMe Virtio SCSI Virtio BLK NVMe

Backend
Device
sharing

Y N Y Y Y

Application
Transparent
support

Y Y Y N (e.g., Command
set is very small)

Y

Live
Migration
support

Y N Y Y N

VFIO
dependency

N Y N N N

QEMU
Change

No modification Upstream is
done

Upstream is
done

Upstream is done Upstream is in
process

Solution

Usage

SPDK vhost NVMe

implementation details

vhost NVMe implementation details

QEMU

Guest VM
NVMe Controller

Shared Guest VM
Memory

SPDK Vhost-NVMe

v
h

o
st

D
P

D
K

 v
h

o
st

NVMe

sq cq

s
q

c
q

Admin Queue

B
D

E
V

NVMe IO Queue Poller

N
S

1

B
D

E
V

N
S

2

B
D

E
V

N
S…

…

Kernel

kvm

UNIX Domain Socket

Create io queue

19

Guest: Create IO Queue

QPRIOCQIDQIDQSIZE PC

PRP1

Guest: Submit to Admin, Write DB

QEMU: Pick up Admin Command

QEMU: Send via Domain Socket

SPDK: Start to Create IO Queue

SPDK: Memory Translation

SPDK: Both Guest and SPDK see
same IO Queue now

sq

New feature to address guest NVMe

performance issue

20

SQ 1 Doorbell

MMIO Writes happened, which will
cause VM_EXIT

NVMe 1.3 New Feature: Optional
Admin Command support for Doorbell
Buffer Config, only used for emulated
NVMe controllers, Guest can update
shadow doorbell buffer instead of
submission queue’s doorbell registers

Shadow SQ 1
Doorbell

SQ1

Submit a new IO

Write

Shadow doorbell buffer

Start End Description

00h 03h Submission Queue 0 Tail Doorbell or Eventidx (Admin)

04h 07h Completion Queue 0 Head Doorbell or Eventidx
(Admin)

08h 0Bh Submission Queue 1 Tail Doorbell or Eventidx

0Ch 0Fh Completion Queue 1 Head Doorbell or Eventidx

Command Description

PRP1 Shadow doorbell memory address, updated by Guest NVMe Driver

PRP2 Eventidx memory address, updated by SPDK vhost target

Experiments

1 VM with 1 NVMe SSD

23

0

100

200

300

400

500

600

1

IOPS (K)

QEMU-NVME Vhost-SCSI

Vhost-BLK Vhost-NVMe

0

50

100

150

200

250

300

Guest

Usr

Guest

Sys

Host

Usr

Host

Sys

CPU Utilization (%)

QEMU-NVMe Vhost-SCSI

Vhost-BLK Vhost-NVMe

0

50000000

100000000

150000000

200000000

KVM Events

QEMU-NVMe Vhost-SCSI

Vhost-BLK Vhost-NVMe

System Configuration: 2 * Intel Xeon E5 2699v4 @ 2.2GHz; 128GB, 2667 DDR4, 6 memory Channels; SSD: Intel Optane™ P4800X, FW: E2010324, 375GiB; Bios: HT
disabled, Turbo disabled; OS: Fedora 25, kernel 4.16.0. 1 VM, VM config : 4 vcpu 4GB memory, 4 IO queues; VM OS: Fedora 27, kernel 4.16.5-200, blk-mq enabled;
Software: QEMU-2.12.0 with SPDK Vhost-NVMe driver patch, IO distribution: 1 vhost-cores for SPDK, FIO 3.3, io depth=32, numjobs=4, direct=1, block size=4k,total
tested data size=400GiB

8 VMs with 4 NVMe SSDs

System Configuration: 2 * Intel Xeon E5 2699v4 @ 2.2GHz; 256GB, 2667 DDR4, 6 memory Channels; SSD: Intel DC P4510, FW: VDV10110,
2TiB; BIOS: HT disabled, Turbo disabled; Host OS: CentOS 7, kernel 4.16.7. 8 VMs, VM config : 4 vcpu 4GB memory, 4 IO queues; Guest OS:
Fedora 27, kernel 4.16.5-200, blk-mq enabled; Software: QEMU-2.12.0 with SPDK Vhost-NVMe driver patch, IO distribution: 2 vhost-cores for
SPDK, FIO 3.3, io depth=128, numjobs=4, direct=1, block size=4k,runtime=300s,ramp_time=60s; SSDs well preconditioned with 2 hours
randwrites before randread tests.

0

500

1000

1500

2000

2500

3000

randread

IOPS (K)

Vhost-SCSI Vhost-BLK Vhost-NVMe

• Linux kernel NVMe driver will poll completion queue when submitting a new
request, which can help to decrease interrupt numbers and vm_exit events.

0

500

1000

1500

2000

2500

randread

Latency (us)

Vhost-SCSI Vhost-BLK Vhost-NVMe

Conclusion

Conclusion & Future work

• Conclusion
– In this presentation, we introduce SPDK vhost

solution(i.e., SCSI/Blk/NVMe) to accelerate NVMe

I/Os in virtual machines

• Future work
– VM live migration support for the whole SPDK vhost

solution(i.e., vhost SCSI/BLK/NVMe)

– Upstream QEMU vhost driver.

• Promotion
– Welcome to evaluate & use SPDK vhost target !

– Welcome to contribute to SPDK community !

Q & A

