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Background



NVMe & virtualization 

• NVMe specification enables highly 
optimized drives (e.g., NVMe SSD)

– For example, multiple I/O queues allows lockless 
submission from CPU cores in parallel

• However, even the best kernel mode 
drivers have non-trivial software overhead

– Long I/O stack in kernel with resource contention

• Virtualization adds additional overhead
– Long I/O stack in both guest OS kernel and host OS 

kernel

– Context switch overhead (e.g., VM_EXIT caused by 
I/O interrupt in guest OS)



What is in QEMU’s solution?

• The solution in QEMU to virtualize NVMe
device:

• Virtio virtualization

• NVMe controller virtualization

• Hardware assisted virtualization

• Virtio virtualization
– Virtio SCSI/block Controllers

• NVMe controller virtualization
– QEMU emulated NVMe Device (file based NVMe

backend)

– QEMU NVMe Block Driver based on VFIO (exclusive 
access by QEMU)



Background: What is in QEMU

• Paravirtualized driver 
specification

• Common mechanisms 
and layouts for device 
discovery, I/O queues, 
etc.

• virtio device types 
include:
• virtio-net

• virtio-blk

• virtio-scsi

• virtio-gpu

• virtio-rng

• virtio-cryptoHypervisor (i.e. QEMU/KVM)

Guest VM
(Linux*, Windows*, FreeBSD*, etc.)

virtio front-end drivers

virtio back-end drivers

device emulation

virtqueuevirtqueuevirtqueue



Accelerate virtio via vhost target

vhost target 
(kernel or userspace)

• Separate process for 
I/O processing

• vhost protocol for 
communicating guest 
VM parameters
• memory

• number of virtqueues

• virtqueue locations

Hypervisor (i.e. QEMU/KVM)

Guest VM
(Linux*, Windows*, FreeBSD*, etc.)

virtio front-end drivers

Device
emulation

virtio back-enddrivers

virtqueuevirtqueuevirtqueue

vhostvhost



SPDK vhost solution



What is SPDK?

Storage 
Performance

Development 
Kit
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Scalable and Efficient Software Ingredients

• User space, lockless, polled-mode components

• Up to millions of IOPS per core 

• Designed for Intel Optane™ technology latencies

Intel® Platform Storage Reference Architecture

• Optimized for Intel platform characteristics

• Open source building blocks (BSD licensed)

• Available via github.com/spdk or spdk.io



SPDK architecture
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Combine virtio and NVMe to inform

a uniform SPDK vhost solution

Host Memory

QEMU

Guest VM
Virtio

Controller

Shared Guest VM
Memory

SPDK vhost

vhost DPDK vhost

virtio

virtqueuevirtqueuevirtqueue

UNIX domain 
socket

eventfd

Host Memory

QEMU

Guest VM
NVMe

Controller

Shared Guest VM
Memory

SPDK vhost

vhost DPDK vhost

NVMe

UNIX domain 
socket

eventfd

sq cq



Virtio VS NVMe
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Submission QueueAvailable Ring

TAILAvailable Index

Both Use Ring Data 
Structures for IO



Virtio-SCSI and NVMe protocol 

format comparison

ADDR

LEN

FLAGS

NEXT

SCSI_REQ

ADDR

LEN

FLAGS

NEXT

DATA

ADDR

LEN

FLAGS

NEXT

SCSI_RSP

NVMe_Req

NVMe_Rsp

DATA

(16 * 3 + SCSI_Req + SCSI_Rsp + Data) Bytes
(NVMe_Req + Data + 

NVMe_Rsp) Bytes



SPDK vhost architecture

QEMU Guest 1

Vhost SCSI Driver

Vhost BLK Driver

Vhost NVMe Driver

Kernel

kvm

Virtio SCSI 
Controller

Guest 2

Virtio BLK 
Controller

Guest 3

NVMe
Controller

SPDK vhost Target

SCSI BLK NVMe

BDEV

QEMU Released

Separate Patch for QEMU



Comparison of known solutions

QEMU
Emulated
NVMe device

QEMU VFIO
Based solution

SPDK 
Vhost-SCSI

SPDK 
Vhost-BLK

SPDK 
Vhost-NVMe

Guest OS 
driver 
Interface

NVMe NVMe Virtio SCSI Virtio BLK NVMe

Backend
Device
sharing

Y N Y Y Y

Application
Transparent
support

Y Y Y N (e.g., Command 
set is very small )

Y

Live 
Migration 
support

Y N Y Y N

VFIO 
dependency

N Y N N N

QEMU
Change

No modification Upstream is
done

Upstream is 
done

Upstream is done Upstream is in
process

Solution

Usage



SPDK vhost NVMe

implementation details



vhost NVMe implementation details

QEMU

Guest VM
NVMe Controller

Shared Guest VM
Memory

SPDK Vhost-NVMe
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Create io queue
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Guest: Create IO Queue

QPRIOCQIDQIDQSIZE PC

PRP1

Guest: Submit to Admin, Write DB

QEMU: Pick up Admin Command

QEMU: Send via Domain Socket

SPDK: Start to Create IO Queue

SPDK: Memory Translation

SPDK: Both Guest and SPDK see 
same IO Queue now

sq



New feature to address guest NVMe

performance issue
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SQ 1 Doorbell

MMIO Writes happened, which will 
cause VM_EXIT

NVMe 1.3 New Feature: Optional 
Admin Command support for Doorbell 
Buffer Config, only used for emulated 
NVMe controllers, Guest can update 
shadow doorbell buffer instead of 
submission queue’s doorbell registers

Shadow SQ 1 
Doorbell

SQ1

Submit a new IO

Write



Shadow doorbell buffer

Start End Description

00h 03h Submission Queue 0 Tail Doorbell or Eventidx (Admin)

04h 07h Completion Queue 0 Head Doorbell or Eventidx
(Admin)

08h 0Bh Submission Queue 1 Tail Doorbell or Eventidx

0Ch 0Fh Completion Queue 1 Head Doorbell or Eventidx

Command Description

PRP1 Shadow doorbell memory address, updated by Guest NVMe Driver

PRP2 Eventidx memory address, updated by SPDK vhost target



Experiments



1 VM with 1 NVMe SSD
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System Configuration: 2 * Intel Xeon E5 2699v4 @ 2.2GHz; 128GB, 2667 DDR4, 6 memory Channels; SSD: Intel Optane™ P4800X, FW: E2010324, 375GiB; Bios: HT 
disabled, Turbo disabled; OS: Fedora 25, kernel 4.16.0.  1 VM, VM config : 4 vcpu 4GB memory, 4 IO queues; VM OS: Fedora 27, kernel 4.16.5-200, blk-mq enabled; 
Software: QEMU-2.12.0 with SPDK Vhost-NVMe driver patch, IO distribution: 1 vhost-cores for SPDK, FIO 3.3, io depth=32, numjobs=4, direct=1, block size=4k,total 
tested data size=400GiB



8 VMs with 4 NVMe SSDs

System Configuration: 2 * Intel Xeon E5 2699v4 @ 2.2GHz; 256GB, 2667 DDR4, 6 memory Channels; SSD: Intel DC P4510, FW: VDV10110,
2TiB; BIOS: HT disabled, Turbo disabled; Host OS: CentOS 7, kernel 4.16.7.  8 VMs, VM config : 4 vcpu 4GB memory, 4 IO queues; Guest OS: 
Fedora 27, kernel 4.16.5-200, blk-mq enabled; Software: QEMU-2.12.0 with SPDK Vhost-NVMe driver patch, IO distribution: 2 vhost-cores for 
SPDK, FIO 3.3, io depth=128, numjobs=4, direct=1, block size=4k,runtime=300s,ramp_time=60s; SSDs well preconditioned with 2 hours 
randwrites before randread tests.
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• Linux kernel NVMe driver will poll completion queue when submitting a new 
request, which can help to decrease interrupt numbers and vm_exit events.
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Conclusion



Conclusion & Future work

• Conclusion
– In this presentation, we introduce SPDK vhost

solution(i.e., SCSI/Blk/NVMe) to accelerate NVMe

I/Os in virtual machines

• Future work
– VM live migration support for the whole SPDK vhost

solution(i.e., vhost SCSI/BLK/NVMe)

– Upstream QEMU vhost driver.

• Promotion
– Welcome to evaluate & use SPDK vhost target ! 

– Welcome to contribute to SPDK community !



Q & A




