
Accelerate Network Protocol Stack
Performance and Adoption in the Cloud
Networking via DMM

Waterman Cao
Senior Researcher
Cloud Networking Lab, Huawei

2

Overview

01 02
Use Cases

03
What we face DMM Overview

AGENDA

3

Why we need a new way to implement protocol

stack?

Diversified and Ultimate QoS req.

• Diversity: e.g. >2 million mobile apps with various QoS

• Performance: e.g. <1ms, >1Gbps, 10M concurrent , @5G

• App Density: e.g. >30 of APP @ smart-phone, 100s

containers @ cloud host

Ossified Kernel Networking Stack

• General-purpose design

• General performance tradeoff

• Hard to customization

• Long protocol/algorithm release cycle…

Mismatched

1992 2002 2007 ？ time

v0.98

v0.2.5.20

v0.2.6.33

TCP/IP
SCTP

UDP-Lite

MPTCP?

• More than 25 years, <5 transport protocols are released in

the Linux kernel

• It has takes 8 years after MPTCP was firstly proposed, but

MPTCP is still not released in the Linux kernel

The history of transport protocol

released in Linux Kernel
Kernel
version

4

Challenges in Future Transport Protocol Design

• Extremely high performance

 Video – orders of magnitudes higher bandwidth

 VR/AR – very low latency and jitter

 IoT – orders of magnitudes more concurrent

connections

• Diversified network QoS/SLA

 Applications with different QoS/SLA requirements

exist simultaneously on the same platform

 Any optimization is tradeoff between factors

• Heterogeneous network environments

 Cloud computing and mobile internet turn the

network into an extremely complicated system

 Network environment might change significantly due

to network participants’mobility

5

Trends in Future Transport Protocol Design

• Alternative transport protocols
 Google’s QUIC

 IBM’s FASP

• User-space network stack
 Improving performance

 Protecting intellectual property

6

Overview

01 02
Use Cases

03
What we face DMM Overview

AGENDA

7

DMM Project : Re-design the Protocol Stack

- DMM (Dual mode Multi-protocol Multi-

instance) is DMM is an open source network

stack framework under FD.io project, licensed

as Apache , which enables:

- Dual mode :Support Kernel Space and User

Space

- Multi-protocol: Simplify new protocols

adoptions and Integrations with flexible

framework

- Multi-instance: concurrent stack instances and

Enable “protocol routing” in Cloud Networking

- DMM aims to provide the capability to have
multiple protocol and multiple stack

instances running simultaneously in the same

platform.

Kernel
Space

User
Space

TCP/IP High throughput
stack

Low delay
stack

POSIX SOCKET

DMM

Online Game Video Web

S
ta

ck
 O

rch
e
stra

to
r

VPP

Network I/O Engine

8

DMM in the Overall stack

Hardware

Network Controller

Orchestration

Operation System

Data Plane Services

Application Layer/App Server

Packet
Processing

Network
IO

Dataplane
Management

Agent

Honeycomb hc2vpp

Dataplane Management Agent

NSH_SFC ONE TLDK

odp4vppCICN
VPP

Sandbox

VPP

deb_dpdk rpm_dpdk
Network IO

Packet Processing
DMM

9

Application server and client calls
socket interface.

1

Protocol Routing Workflow

socket(), bind()
Application server

socket()
Application client

10

socket(), bind()
Application server

socket()
Application client

Application server and client calls
socket interface.

Socket APIs are hijacked to DMM
nSocket APIs.

1

Protocol Routing Workflow

LD_PRELOAD

DMM LD_PRELOAD

DMM nSocket API

DMM nSocket API

2

11

socket(), bind()
Application server

socket()
Application client

Application server and client calls

socket interface.

Socket APIs are hijacked to DMM

nSocket APIs.

Server call listen() triggers L-RD to

negotiate protocol policies.

L-RD: manage local DMM Policies and

Protocol Configure.

1

Protocol Routing Workflow

LD_PRELOAD

DMM LD_PRELOAD

DMM nSocket API

DMM nSocket API

2
L-RD

3

12

socket(), bind()
Application server

socket()
Application client

Application server and client calls

socket interface.

Socket APIs are hijacked to DMM

nSocket APIs.

Server call listen() triggers L-RD to

negotiate protocol policies.

L-RD: manage local DMM Policies and

Protocol Configure.

Server call accept() and client call

connect() trigger L-RD to retrieve

and resolve protocol stack

mapping.

1

Protocol Routing Workflow

LD_PRELOAD

DMM LD_PRELOAD

DMM nSocket API

DMM nSocket API

2
L-RD

3

4

13

socket(), bind()
Application server

socket()
Application client

Application server and client calls

socket interface.

Socket APIs are hijacked to DMM

nSocket APIs.

Server call listen() triggers L-RD to

negotiate protocol policies.

L-RD: manage local DMM Policies and

Protocol Configure.

Server call accept() and client call

connect() trigger L-RD to retrieve

and resolve protocol stack

mapping.

According to the mapping, the

socket is instantiated to one

protocol stack

1

Protocol Routing Workflow

LD_PRELOAD

DMM LD_PRELOAD

DMM nSocket API

DMM nSocket API

2
L-RD

3

4

VPP Host Stack

vppcom_session_...()

vppcom_session_...()

5

14

socket(), bind()
Application server

socket()
Application client

Application server and client calls

socket interface.

Socket APIs are hijacked to DMM

nSocket APIs.

Server call listen() triggers L-RD to

negotiate protocol policies.

L-RD: manage local DMM Policies and

Protocol Configure.

Server call accept() and client call

connect() trigger L-RD to retrieve

and resolve protocol stack

mapping.

According to the mapping, the

socket is instantiated to one

protocol stack or Another.

1

Protocol Routing Workflow

LD_PRELOAD

DMM LD_PRELOAD

DMM nSocket API

DMM nSocket API

2
L-RD

3

4

5

Another protocol
stack

stackx-socket_...()

stackx-socket_...()

15

socket(), bind()
Application server

socket()
Application client

Application server and client calls

socket interface.

Socket APIs are hijacked to DMM

nSocket APIs.

Server call listen() triggers L-RD to

negotiate protocol policies.

L-RD: manage local DMM Policies and

Protocol Configure.

Server call accept() and client call

connect() trigger L-RD to retrieve

and resolve protocol stack

mapping.

According to the mapping, the

socket is instantiated to one

protocol stack or Another.

Dual mode(kernel or user-space),

Multiple protocols, Multiple

instances can exist simultaneously.

1

Protocol Routing Workflow

LD_PRELOAD

DMM LD_PRELOAD

DMM nSocket API

DMM nSocket API

2

L-RD 3

4

5

Another protocol
stack

stackx-socket_...()

stackx-socket_...()

VPP Host Stack

vppcom_session_...()

vppcom_session_...()

6

16

Protocol Routing Workflow (with Centeral RD)

17

Overview

01 02
Use Cases

03
What we face DMM Overview

AGENDA

18

Client #3

Client #2

File Sync Application

• 3 Clients --> Server

Network Setting

• Internet (Client #1)

• Intra DataCenter (Client #2)

• Inter DataCenter (Client #3)

Comparison scheme
• Default: the kernel TCP/IP stack

• DMM: support kernel TCP/IP stack, RDMA,

FillP (home-grown stack)

By adaptively negotiating stacks according to the network environments, DMM achieves

significant performance improvement comparing with the kernel stack by default

Using Kernel stack

Using FillP
Using RDMA

Use Case 1 : Protocol Routing

For more detail of this demo, please go to Huawei Demo Booth.

19

Use Case #2: Dual mode support for Nginx Server

Nginx application

• kernel stack vs user-space stack ?

DMM nRD Policy
• Internet connection ---> kernel stack

• LAN connection ---> user-space stack

Nginx

Server

Kernel

TCP/IP

Stack

User

Space

TCP/IP

Stack

DM

M

Interne

t

LAN

Using DMM, Nginx server could switch between kernel stack and user-space stack
adaptively to use their advantages respectively under different scenario

n
R

D

SBR

20

Demo: Protocol Routing for Multi-network Client-
Server Application

• No one stack/protocol fits all scenario, but by adaptively
negotiating stack according to the network environment,
DMM achieves significant performance improvement.

Reduced by
97%

Reduced by
69%

Almost no Framework overhead

RDMA

Customized Userspace
TCP/IP

Kernel Stack

21

Key Takeaway

22

DMM: Key takeaways

 Flexibility to dynamically choose different protocols according

to performance and/or functional requirements

 End-to-end orchestration to maintain stack instances and the

app/socket-to-stack mappings

 Extendable transport protocol plug-in framework to host

multiple stack instances simultaneously

 Let stack developers concentrate on user space protocol

innovation

23

DMM: Benefits to application developers/end-users

• Friendly Acceleration:

 Acceleration w/ backward compatible API, friendly to the legacy

• Adaptive and customized Acceleration:

 ‘Protocol Routing’ based on network env, application requirements and host information

‘Protocol Routing’ workflow

24

DMM: Benefits to stack/protocol researchers/developers

• Friendly interfaces to integrate new protocol stacks

 Flexible Pkt I/O NIC/L2/L3/L4 (EAL)

 Simplified API (SBR)

• Accelerate innovation of new protocol stacks

 Modular and reusable function blocks w/ high perf.

 Integration w/ both kernel and user space (VPP)

25

DMM project roadmap

• Fd.io open source

announcement
• User Guide

• Manual nRD

• Dual mode support

• User space LWIP Stack

(DPDK) is ready for example.

• Initial support for rSocket
• Initial support for VPP host

stack

• DMM Whitepaper (Stack

migration in into DMM

framework
• Package release on rpm

and deb.

• F-stack into DMM

• Support “Fork”example
• DMM Performance

optimization

• Enhance

the“contactless” for APP

18.04 18.07 18.10

26

Welcome to join in us

• FD.io DMM Web Site

• https://wiki.fd.io/view/DMM

• Code

• https://git.fd.io/dmm

• Contact us

• Mail list: dmm-dev@lists.fd.io

• IRC: #fdio-dmm

mailto:dmm-dev@lists.fd.io

Copyright©2018 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without

limitation, statements regarding the future financial and operating results, future product

portfolio, new technology, etc. There are a number of factors that could cause actual

results and developments to differ materially from those expressed or implied in the

predictive statements. Therefore, such information is provided for reference purpose

only and constitutes neither an offer nor an acceptance. Huawei may change the

information at any time without notice.

Thank You.

