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What is ACRN?

ACRNTM is a Big Little Hypervisor for IoT Development

ACRN™ is a flexible, lightweight reference hypervisor, built with 
real-time and safety-criticality in mind, optimized to streamline 
embedded development through an open source platform



ACRN Features

Small Footprint

• Optimized for resource 
constrained devices

Real Time

• Low latency
• Enables faster boot time

Built for 
Embedded IoT

• Rich set of I/O mediators 
to share devices across 
multiple VMs

Adaptability

• Multi-OS support for 
guest systems like Linux 
and Android

Open Source

• Permissive BSD licensing

Safety Criticality

• Project is built with safety 
critical workload 
considerations in mind



Virtualization User Cases for IOT

In-Vehicle-Infotainment Robotics

IndustrialPrecision instrument



Architecture Overview
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ACRN as a Device Hypervisor

• Small footprint

• BSD licensee

• Be able to cherry pick piece of codes into OSV/OEM’s own 
hypervisor

• Verified boot

• Rich I/O mediators

KVM Xen ACRN

LOC 17M 290K 25K

GPU IPU CSE USB Audio Ethernet Block IOC Touch
Mediated 
Passthru

Virtio Virito Emu. Virtio Virtio Virtio Emu. Virtio



Device Model APP1

Verified Boot Sequence with SBL

• CSE verifies SBL
• SBL verifies ACRN & SOS 
Kernel

• SOS kernel verifies DM 
& vSBL thru dm-verity

• vSBL starts the guest 
side verification 
process (reusing the 
Android verified boot 
mechanism)

• NOTE: Each user VM has 
a DM APP instance in 
SOS

Android VM 2

SOS

Device Model 
APP1
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Android VM 1
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Stitched as 
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Verified Boot Sequence with UEFI

ACRN.EFI SOS Kernel
OS 

Bootloader
Device 
Model

vSBL …..

• UEFI verifies ACRN & OS Bootloader & SOS Kernel

• SOS kernel verifies DM and vSBL thru dm-verity

• vSBL starts the guest side verified boot process

• NOTE: ACRN remains EFI runtime services and boot time 
services (without interrupt)

UEFI



ACRN Hypervisor
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• Trusty OS is Google released 
OS for Android secure world 
which designed to execute in 
ARM TrustZone mode.

• ACRN hypervisor provide vCPU 
with different contexts for 
normal world and secure 
world. The android OS and 
Trusty OS can trigger the 
world switch through 
hypercall.

• ACRN hypervisor also 
maintain two EPT tables for 
different worlds. The secure 
world memory is invisible 
for normal world, but not 
vice versa. 



Host Embedded Controller Interface(HECI)

HECI emulator implements 
a virtio PCIe device to 
support multiple User OS.

HECI BE will communicate 
with HECI FE driver to 
send & receive the HECI 
messages. 

HECI client layer 
protocol will read/write 
to SOS MEI cdev directly. 
And HECI bus messages 
will emulate in the BE.
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*MEI: Intel Management Engine Interface Linux driver; mei_cl_driver: mei client driver
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User OS

User OS

SEED Virtualization

• HV gets pSEED from SBL, 
which retrieves from 
CSE through HECI

• Hypervisor implements 
Key derivation function 
(HKDF-256) to generate 
child seeds (vSEED) per 
request

• Present the derived 
vSEED to guest VM. Each 
guest cannot see/derive 
the other guest’s 
vSEED
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Automotive IO Controller Virtualization

User OS

User OS

• IOC(IO controller) is a 
bridge of SoC to 
communicate with Vehicle 
Bus. It routing of Vehicle 
Bus signals(for example, 
extracted from CAN 
messages) from IOC to the 
SoC and back, as well as 
controlling the onboard 
peripherals from SoC.

• SOS owns IOC, but UOS may 
access part features

• Whitelisted CMDs from UOS 
may be forwarded / 
emulated

• Support Intel IOC 
controller only, OEMs may 
extend

Service OS
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User OS

USB Virtualization

xHCI emulator provides 
multiple instances of 
virtual xHCI controller 
to share among multiple 
User Oss, each USB port 
can be dedicatedly 
assigned to a VM.

xDCI controller can be 
passed through to the 
specific user OS with 
I/O MMU assistance.

DRD device model 
emulate the APL PHY MUX 
control logic. The 
frontend re-use the 
native Intel USB role 
driver directly which 
provides sysfs
interface to user space 
of user OS to switch 
DCI/HCI role in CarPlay
SW.
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Other mature I/O mediator 

• Standard virtio devices
– virtio storage

– virtio network

– virtio console

– virtio input

• GPU virtualization
– base on Intel Open Source GVT-g technology



ACRN Roadmap - Proposal

Area v0.2@Q2‘18 v0.5@Q3’18 V0.8@Q4’18 V1.0@Q1‘19 V1.x@2019

HW

• APL NUC (UEFI)

• KBL NUC (UEFI)

• APL UP2 (UEFI)

• APL NUC (UEFI)

• KBL NUC (UEFI)

• APL UP2 (UEFI)

• APL NUC (UEFI)

• KBL NUC (UEFI)

• APL UP2 (UEFI)

• APL NUC (UEFI)

• KBL NUC (UEFI)

• APL UP2 (UEFI)

• APL NUC (UEFI)

• KBL NUC (UEFI)

• APL UP2 (UEFI)

• APL Minnowboard3 
(SBL)

• ARM 

Hypervisor

• VT-x

• VT-d

• CPU static-partitioning

• memory partitioning

• Virtio (v0.95)

• VHM

• EFI boot

• ClearLinux as guest

• Virtio (v1.0)

• Power Management 
(Px/Cx)

• VM management

• ACRN debugging 
tool

• vSBL

• AliOS as guest

• Zephyr as guest

• Logical partitioning 
without  Service OS

• 32bit guest

• Guest Real 
mode

• Android as guest

• MISRA C 
compliance

• Trusty (Security)

• SBL boot *

• vHost

• Basic Realtime

• Power Management 
(S3/S5)

• Advanced Realtime

• Windows as guest

• vxWorks as guest

• SGX (Security)

• Functional Safety 
compliance

• CPU sharing

• ARM

I/O 
virtualization

• Storage

• Ethernet

• USB host controller (PT)

• USB device controller 
(PT)

• Audio (PT)

• WiFi (PT)

• Touch (PT)

• GPU Sharing

• GPU Sharing

• GPU Prioritized 
Rendering

• GPU Surface Sharing

• IPU (PT)

• Touch sharing

• IOC sharing

• Audio sharing

• USB host 
controller 
Sharing

• IPU Sharing

• USB DRD virtualization

• CarPlay

• HECI sharing (Security)

• CSME/DAL sharing 
(Security) 

• TPM Sharing (Security)

• eAVB/TSN Sharing

• SR-IOV



Call For Action

• Watch, …
https://github.com/projectacrn/acrn-hypervisor 

• … try, …
https://github.com/projectacrn/acrn-
hypervisor/blob/master/doc/getting_started/index.rst

• … and participate!
https://lists.projectacrn.org/g/acrn-dev/topics 

WeChat WeiBo





Reference:
• ELC2018 ACRN introduction– Eddie Dong

• Android tamper-resistant anti-replay secure 
storage solution and its virtualization – Bing 
Zhu



Backup

• Storage virtualization
• Network virtualization
• GPU virtualization
• Audio virtualization
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Map/filter a guest disk access to a 
host storage area (disk, partition, file 

or portion of them)
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• Map a host storage area (SAR), i.e., disk / partition / file, as a 
guest disk

• Map a portion of host SAR (start_LBA, size) as a guest disk

VM2 partition
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Service OS

App

GPU Virtualization
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User OS
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User OS

Audio Virtualization

User OS

User OS

ACRN Hypervisor
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ALSA: Advanced Linux Sound 
Architecture

FE driver communicate with 
IPC driver thru ops callback of 
platform driver

FE driver forwards IPC 
commands to BE service thru 
virtio shared rings

Service OS can directly access 
the memory of User OS

BE service communicate with 
IPC driver thru  IPC TX/RX 
interface of IPC driver

*SOF: Sound Open Firmware; PCM: Pulse-code modulation; IPC: Inter-Processor Communication
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