
ACRN
ACRN™ : A Big Little Hypervisor for IoT Development

Yu Wang, Intel Open Source Technology Center

Key contributors: Anthony Xu; Jason Chen; Eddie Dong; Bing Zhu; Jack Ren; Hao Li; Kevin Tian

Table of Contents

PART 1: ACRN Overview

PART 2: Security in ACRN

PART 3: Rich I/O Mediation

PART 4: Call for Participation

What is ACRN?

ACRNTM is a Big Little Hypervisor for IoT Development

ACRN™ is a flexible, lightweight reference hypervisor, built with
real-time and safety-criticality in mind, optimized to streamline
embedded development through an open source platform

ACRN Features

Small Footprint

• Optimized for resource
constrained devices

Real Time

• Low latency
• Enables faster boot time

Built for
Embedded IoT

• Rich set of I/O mediators
to share devices across
multiple VMs

Adaptability

• Multi-OS support for
guest systems like Linux
and Android

Open Source

• Permissive BSD licensing

Safety Criticality

• Project is built with safety
critical workload
considerations in mind

Virtualization User Cases for IOT

In-Vehicle-Infotainment Robotics

IndustrialPrecision instrument

Architecture Overview

Secure
World

Service VM

(PIT, PCI, ACPI ..)

Hypercalls

VT-d EPT

ACRN Hypervisor
VMX

Trusty API
vPIC/vLAPIC/
vIOAPIC/vMSI

ACRN Device Model
(Mediators)

VM
Manager

Linux Guest VM

virtio
FE Drivers

User

Kernel

User

Kernel

VM API

SOC Platform (Apollo Lake etc.)

Firmware (UEFI, SlimBoot etc.)

CSE

Keystore

Virtual Firmware

Normal
World

virtio
FE Drivers

User

Kernel

Virtual FirmwareVMX non-root
operation

VMX root
operation

Android Guest VM

Keystore

Native Device Driver
Native Device Driver

Kernel Mediators

ACRN as a Device Hypervisor

• Small footprint

• BSD licensee

• Be able to cherry pick piece of codes into OSV/OEM’s own
hypervisor

• Verified boot

• Rich I/O mediators

KVM Xen ACRN

LOC 17M 290K 25K

GPU IPU CSE USB Audio Ethernet Block IOC Touch
Mediated
Passthru

Virtio Virito Emu. Virtio Virtio Virtio Emu. Virtio

Device Model APP1

Verified Boot Sequence with SBL

• CSE verifies SBL
• SBL verifies ACRN & SOS
Kernel

• SOS kernel verifies DM
& vSBL thru dm-verity

• vSBL starts the guest
side verification
process (reusing the
Android verified boot
mechanism)

• NOTE: Each user VM has
a DM APP instance in
SOS

Android VM 2

SOS

Device Model
APP1

vSBL: Initialization

Trusty OS Android OS

Android VM 1

vSBL: Android OS Loader

Stitched as
one image

SOS Kernel

ACRN

SBL

CSE

Verified Boot Sequence with UEFI

ACRN.EFI SOS Kernel
OS

Bootloader
Device
Model

vSBL …..

• UEFI verifies ACRN & OS Bootloader & SOS Kernel

• SOS kernel verifies DM and vSBL thru dm-verity

• vSBL starts the guest side verified boot process

• NOTE: ACRN remains EFI runtime services and boot time
services (without interrupt)

UEFI

ACRN Hypervisor

vCPU

Normal
world

context

switch

Secure
world
context

Trusty OS virtualization

Service OS User OS

Android World

Kernel

Trusty World

User

vCPU

Normal
world
context

switch

Secure
world
context

Memory Android VM memory
Normal world
memory

Secure world EPT

Normal world EPT

Trusty
driver

Trusty OS kernel

Hypercall

switch

trusty apps
trusty appsAndroid

trusty apps

trusted
appstrusted

appstrusted
apps

• Trusty OS is Google released
OS for Android secure world
which designed to execute in
ARM TrustZone mode.

• ACRN hypervisor provide vCPU
with different contexts for
normal world and secure
world. The android OS and
Trusty OS can trigger the
world switch through
hypercall.

• ACRN hypervisor also
maintain two EPT tables for
different worlds. The secure
world memory is invisible
for normal world, but not
vice versa.

Host Embedded Controller Interface(HECI)

HECI emulator implements
a virtio PCIe device to
support multiple User OS.

HECI BE will communicate
with HECI FE driver to
send & receive the HECI
messages.

HECI client layer
protocol will read/write
to SOS MEI cdev directly.
And HECI bus messages
will emulate in the BE.

ACRN Hypervisor

User OSService OS

User OS

User OS

User

Kernel

MEI Subsystem

PCI-MEI

MEI cdev

HECI
Applications

User

Kernel

ACRN Device Model

HECI virtio
BE Service

MEI Subsystem

MEI cdev

HECI virtio FE Driver

CSE Hardware

mei_cl_driver

APL hardware

*MEI: Intel Management Engine Interface Linux driver; mei_cl_driver: mei client driver

mei_cl_drivermei_cl_driver mei_cl_drivermei_cl_drivermei_cl_driver

HECI
Applications

User OS

User OS

SEED Virtualization

• HV gets pSEED from SBL,
which retrieves from
CSE through HECI

• Hypervisor implements
Key derivation function
(HKDF-256) to generate
child seeds (vSEED) per
request

• Present the derived
vSEED to guest VM. Each
guest cannot see/derive
the other guest’s
vSEED

Service OS

(PIT, PCI, ACPI ..)

ACRN Hypervisor

Device Model

User OS

User

Kernel

vSBL

CSE Hardware & Firmware pSEED

pSEED

SOS SBLvSEED0

One time read after boot

Derive - 0 Derive - 2 Derive - 1

Derive - 3

Get and Erase

UEFI/SBL pSEED

vSEED0

Trusty
World

Android
World

Get and Erase

vSEED1

vSEED1

User

Kernel

Automotive IO Controller Virtualization

User OS

User OS

• IOC(IO controller) is a
bridge of SoC to
communicate with Vehicle
Bus. It routing of Vehicle
Bus signals(for example,
extracted from CAN
messages) from IOC to the
SoC and back, as well as
controlling the onboard
peripherals from SoC.

• SOS owns IOC, but UOS may
access part features

• Whitelisted CMDs from UOS
may be forwarded /
emulated

• Support Intel IOC
controller only, OEMs may
extend

Service OS

ACRN Hypervisor

ACRN Device Model User OS

IOC Driver
(CBC drive)

IOC
Application

Virtual UART

IOC BE service
(filter to emulate the

whitelisted CMD only)

Physical UART
IOC Hardware

(MCU) CAN Bus

IOC Driver
(CBC drive)

UART
Emulation

CAN Bus

User OS

USB Virtualization

xHCI emulator provides
multiple instances of
virtual xHCI controller
to share among multiple
User Oss, each USB port
can be dedicatedly
assigned to a VM.

xDCI controller can be
passed through to the
specific user OS with
I/O MMU assistance.

DRD device model
emulate the APL PHY MUX
control logic. The
frontend re-use the
native Intel USB role
driver directly which
provides sysfs
interface to user space
of user OS to switch
DCI/HCI role in CarPlay
SW.

ACRN Hypervisor

User OS

User OS

Service OS

APL hardware

User OS

Uaser

Kernel

ACRN Device Model

xHCI controller xDCI Controller

xDCI Driver

Intel USB role
Driver

xHCI Driver

SW Role Switch

Sys I/F

CarPlay
App

Gadget
Daemon

xHCI Emulator

User

Kernel

Host
Daemon

xHCI Driver

Intel USB role
Driver

usbfs

PHY MUX control

USB2 PHY USB3 PHY

PHY MUX

IO MMU

DRD dm

Sys I/F

Other mature I/O mediator

• Standard virtio devices
– virtio storage

– virtio network

– virtio console

– virtio input

• GPU virtualization
– base on Intel Open Source GVT-g technology

ACRN Roadmap - Proposal

Area v0.2@Q2‘18 v0.5@Q3’18 V0.8@Q4’18 V1.0@Q1‘19 V1.x@2019

HW

• APL NUC (UEFI)

• KBL NUC (UEFI)

• APL UP2 (UEFI)

• APL NUC (UEFI)

• KBL NUC (UEFI)

• APL UP2 (UEFI)

• APL NUC (UEFI)

• KBL NUC (UEFI)

• APL UP2 (UEFI)

• APL NUC (UEFI)

• KBL NUC (UEFI)

• APL UP2 (UEFI)

• APL NUC (UEFI)

• KBL NUC (UEFI)

• APL UP2 (UEFI)

• APL Minnowboard3
(SBL)

• ARM

Hypervisor

• VT-x

• VT-d

• CPU static-partitioning

• memory partitioning

• Virtio (v0.95)

• VHM

• EFI boot

• ClearLinux as guest

• Virtio (v1.0)

• Power Management
(Px/Cx)

• VM management

• ACRN debugging
tool

• vSBL

• AliOS as guest

• Zephyr as guest

• Logical partitioning
without Service OS

• 32bit guest

• Guest Real
mode

• Android as guest

• MISRA C
compliance

• Trusty (Security)

• SBL boot *

• vHost

• Basic Realtime

• Power Management
(S3/S5)

• Advanced Realtime

• Windows as guest

• vxWorks as guest

• SGX (Security)

• Functional Safety
compliance

• CPU sharing

• ARM

I/O
virtualization

• Storage

• Ethernet

• USB host controller (PT)

• USB device controller
(PT)

• Audio (PT)

• WiFi (PT)

• Touch (PT)

• GPU Sharing

• GPU Sharing

• GPU Prioritized
Rendering

• GPU Surface Sharing

• IPU (PT)

• Touch sharing

• IOC sharing

• Audio sharing

• USB host
controller
Sharing

• IPU Sharing

• USB DRD virtualization

• CarPlay

• HECI sharing (Security)

• CSME/DAL sharing
(Security)

• TPM Sharing (Security)

• eAVB/TSN Sharing

• SR-IOV

Call For Action

• Watch, …
https://github.com/projectacrn/acrn-hypervisor

• … try, …
https://github.com/projectacrn/acrn-
hypervisor/blob/master/doc/getting_started/index.rst

• … and participate!
https://lists.projectacrn.org/g/acrn-dev/topics

WeChat WeiBo

Reference:
• ELC2018 ACRN introduction– Eddie Dong

• Android tamper-resistant anti-replay secure
storage solution and its virtualization – Bing
Zhu

Backup

• Storage virtualization
• Network virtualization
• GPU virtualization
• Audio virtualization

User OS

User OS

Storage Virtualization

Service OS

ACRN Hypervisor

User OS

Storage FE virito
driver

Guest Virtual
Disk

Map/filter a guest disk access to a
host storage area (disk, partition, file

or portion of them)

Native Storage Driver

Storage BE Service

ACRN Device Model

VM1 partitionPhysical Disk

• Map a host storage area (SAR), i.e., disk / partition / file, as a
guest disk

• Map a portion of host SAR (start_LBA, size) as a guest disk

VM2 partition

User OS
User OS

User OS

Network Virtualization

Service OS

Virtio-NIC FE driver

Guest Virtual NIC

Native NIC
Driver

NIC BE Service

ACRN Device Model

Virtual Bridge /
Switch

Tap / Tun
Driver

External Network

ACRN Hypervisor

Service OS

App

GPU Virtualization

User OS
User OS

ACRN Hypervisor MPT API

User OS

User

Kernel

User

Kernel

App
App

App

GPU

Host GPU
Driver

Pass-
through

Trap

GPU BE Services

vGPUvGPUvGPU
Guest GPU

Driver

User OS

Audio Virtualization

User OS

User OS

ACRN Hypervisor

User

Kernel

Audio Apps

ALSA lib/Tiny ALSA

ALSA Core

SOF Machine Driver

SOF PCM Driver

SOF IPC Driver

Service OS

Virtio Audio
BE Service

User

Kernel

Audio Apps

SOF IPC Driver

Virtio Audio FE
Drivers

Shared
Rings

DSP Platform Driver

ALSA: Advanced Linux Sound
Architecture

FE driver communicate with
IPC driver thru ops callback of
platform driver

FE driver forwards IPC
commands to BE service thru
virtio shared rings

Service OS can directly access
the memory of User OS

BE service communicate with
IPC driver thru IPC TX/RX
interface of IPC driver

*SOF: Sound Open Firmware; PCM: Pulse-code modulation; IPC: Inter-Processor Communication

SOF PCM Driver

SOF Machine Driver

ALSA Core

ALSA lib/Tiny ALSA

