
Dou Liyang douly.fnst@cn.fujitsu.com

Kernel Interrupt: A Major Overhaul

Copyright 2018 FUJITSU LIMITED

- APIC Initialization

&

- Vector Allocation

June 20 2018

Outline

Basics of an interrupt

Overhaul of interrupt

APIC Initialization

Vector Allocation

 Future work

1 Copyright 2018 FUJITSU LIMITED

What's next?

What is An Interrupt?

A hardware signal

 Emitted from a peripheral to a CPU

 Indicating that a device-specific condition has been satisfied

2 Copyright 2018 FUJITSU LIMITED

device CPU

From Marc Zyngier <marc.zyngier@arm.com>

Multiplexing Interrupts

Having a single interrupt for the CPU is usually not enough

Most systems have tens, hundreds of them

 An interrupt controller allows them to be multiplexed

Very often architecture or platform specific

 In old x86 machine, there was a PIC called 8259A

 a chip responsible for sequentially processing multiple interrupt requests from

multiple devices

 Called PIC Mode

3 Copyright 2018 FUJITSU LIMITED

device

PIC

device

CPU

Multiplexing Interrupts in SMP System

4 Copyright 2018 FUJITSU LIMITED

device

I/O APIC

device

CPU

CPU

Local APIC

Local APIC

Only a CPU is usually not enough

Most systems have tens, hundreds of CPUs

An new interrupt controller should be used

 In x86 machine, there is an APIC

 Local APIC is located on each CPU core, handles the CPU-specific interrupt

configuration

 I/O APIC distribute external interrupts from multiple devices to multiple CPU

cores

 Called Symmetric I/O Mode

More than wired interrupts: MSIs

5 Copyright 2018 FUJITSU LIMITED

Message Signaled Interrupts are as an alternative to line-based

interrupts

 Trigger an interrupt by writing a value to a particular memory

Allow the use of the same buses as the data

CPU device

MSI Capabilities device

device

CPU

CPU

Handle an Interrupt

 Preempt current task

 Pause execution of the current process.

 Execute interrupt handler

 Search for the handler of the interrupt and transfer control

 Resume the task

 Return to execute the current process;

6 Copyright 2018 FUJITSU LIMITED

Current Task

Has an Interrupt

Interrupt Handler

CPU

①

②

③

④

⑤

⑥

① ②

③ ~ ⑤

⑥

How Does “Handle an Interrupt” Work?

 APIC and Vector mechanism make it work

1. Delivery the IRQ through the APIC

2. CPU search the handler in IDT through the vector

3. Get the irq_desc structure through the vector.

4. Use the irq_desc to get what the interrupt needs

• device info

• interrupt controller info

• IRQ action list info

5. Execute the interrupt service routine (ISR)

7 Copyright 2018 FUJITSU LIMITED

Vector

Irq_desc

Device Chip Action Domain

APIC

Interrupt

ISR

1

2

3

4

5

Why “APIC and Vector ” Can Work?

 Do many initialization and setup works when Linux boots up

8 Copyright 2018 FUJITSU LIMITED

 For the interrupt delivery

• Initialize 8259A

• Switch interrupt delivery mode

• Initialize APIC

• Local APIC setup

• I/O APIC setup

 For IDT table,

• Initialize the mapping of Vector and Handler

 For each Interrupt,

• Allocate an IRQ

• Allocate an irq_desc

• Assign a vector

Device CPU

Interrupt

Context

Normal

Context

Interrupt handler

Outline

 Basics of an interrupt

Overhaul of interrupt

APIC Initialization

Vector Allocation

 Future work

9 Copyright 2018 FUJITSU LIMITED

What's next?

Existing Problems

10 Copyright 2018 FUJITSU LIMITED

 Interrupt in x86 is a conglomerate of ancient bits and pieces

 Subject to 'modernization' and features over the years

• Kdump

• CPU Hotplug/System hibernation

• Multi-queue devices

 It looks like a penguin full of band-aids

 Can work, but can’t see how it works easily.

Problems of APIC Initialization

Horrible interrupt mode setup

 Setup the mode at random places

 Run the kernel with the potentially wrong mode

 Tangle the timer setup with interrupt initialization

11 Copyright 2018 FUJITSU LIMITED

P
IC

 M
o

d
e

Virtual Wire Mode
Symmetric I/O Mode

Timer

Overhaul of APIC Initialization

 1. Unify the APIC and interrupt mode setup

 Construct a selector for the interrupt delivery mode

12 Copyright 2018 FUJITSU LIMITED

acpi_lapic

acpi_ioapic

nr_ioapic

ACPI table

disable_apic

skip_ioapic_setup

Command line options

nolapic/noapic/ apic=

 boot_cpu_has(X86_FEATURE_APIC)

CPU Capability

 smp_found_config

MP table

CONFIG_X86_64

CONFIG_X86_LOCAL_APIC

CONFIG_x86_IO_APIC

CONFIG_SMP

Kconfig

Selector

PIC Mode

Virtual Wire Mode

Symmetric I/O Mode

See arch/x86/kernel/apic/apic.c apic_intr_mode_select()

Overhaul of APIC Initialization

 1. Unify the APIC and interrupt mode setup

 Provide a single function

13 Copyright 2018 FUJITSU LIMITED

init_bsp_APIC()

native_smp_prepare_cpus()

smp_init()

apic_intr_mode_init()

See arch/x86/kernel/apic/apic.c apic_intr_mode_init()

Finished at once

Overhaul of APIC Initialization

 2. Disentangle the timer setup from the APIC initialization

 Refactor the delay logic during APIC initialization process.

• Either use TSC or a simple delay loop to make a rough delay estimate

 Split local APIC timer setup from the APIC setup

14 Copyright 2018 FUJITSU LIMITED

400000000000/HZ TSC cycles

40940000000000/HZ TSC cycles

mdelay(10)

Overhaul of APIC Initialization

 3. Reorganize the interrupt initialization

 Set up the final interrupt delivery mode as soon as possible.

15 Copyright 2018 FUJITSU LIMITED

 1) Set up the legacy timer(PIT/HPET)

 2) Set up APIC/IOAPIC

 3) TSC calibration

 4) Local APIC timer setup

x86_init.timers.timer_init()

x86_init.irqs.intr_mode_init()

tsc_init()

x86_init.timers.setup_percpu_clockev()

Overhaul of APIC Initialization

 4. Some others

 Refactor some common APIC function

 Compatible with ACPI initialization

 Bypass the hypervisor, Such as KVM and Xen

 5. Can check which mode the interrupt is by ‘dmesg’:

16 Copyright 2018 FUJITSU LIMITED

Outline

 Basics of an interrupt

Overhaul of interrupt

APIC Initialization

Vector Allocation

 Future work

17 Copyright 2018 FUJITSU LIMITED

What's next?

Problems of Vector Allocation

Horrible worst vector management mechanism

 Abuse the interrupt allocation for different type interrupts

 Serve all different use cases in one go

 Based on nested loops to search

 Cause vector space exhaustion

Allocate vectors at the wrong time and on the wrong place

 Some dubious properties, causes high complexity

Multi CPU affinities for an IRQ

 Priority level spreading

 Lack of instrumentation

All of this is a black box which allows no insight into the actual vector usage

18 Copyright 2018 FUJITSU LIMITED

Can work?

Overhaul of Vector Allocation

 1. Classify the types of vectors

 2. Refactor the vector allocation mechanism

 3. Switch to a reservation scheme

 4. Some Others

19 Copyright 2018 FUJITSU LIMITED

1. Vector Classifier
2. Vector Allocator

3. Reservation Scheme

Initilization

activation

IRQ startup

Request IRQ

IRQ enabled

An Vector ID

Any functions which

request an vector

Overhaul of Vector Allocation

20 Copyright 2018 FUJITSU LIMITED

 1. Classify the types of vectors

 Each CPU has 256 vectors, But some are fixed

 1. System Vector

* Vectors 0 ... 31

* Vector 128

* Vectors INVALIDATE_TLB_VECTOR_START ... 255

Others are allocated dynamically for normal and managed interrupts.

Classifier

 2. Legacy Vector

* Vectors 0x30 ... 0x3f

Overhaul of Vector Allocation

21 Copyright 2018 FUJITSU LIMITED

 1. Classify the types of vectors

 For external interrupts

 Depend on Interrupt Affinity(the set of CPUs that can handle this interrupt)

Managed Interrupt Normal Interrupt

User space - Affinity can be modified - Affinity is fixed

When migration
- IRQ can be moved to any

online CPUs

- Affinity can be even reset

- IRQ can move only in the affinity.

- But, can be shutdown and restarted.

- Affinity can’t be reset

At setup time
- Affinity must have been setup

- the possible CPUs may be included

- Affinity may be NULL

- A subset of the online CPUs

 3. Normal Vector  4. Managed Vector

Overhaul of Vector Allocation

 2. Refactor the vector allocation mechanism

 Create a new bitmap matrix allocator——IRQ Matrix

22 Copyright 2018 FUJITSU LIMITED

0

0

0

 system bitmap

 Global

available

 Global Counters

allocated system

 Percpu

 allocated bitmap

 managed bitmap

available

 Local Counters

allocated managed

 CPU 0 Percpu

 CPU 1 Percpu

…………

 CPU n Percpu

Allocator

Overhaul of Vector Allocation

 2. Refactor the vector allocation mechanism

Use the matrix for System vector

23 Copyright 2018 FUJITSU LIMITED

0

0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

 system bitmap

 Global

available

 Global Counters

allocated system

 Percpu

 allocated bitmap

 managed bitmap

available

 Local Counters

allocated managed

 CPU 0 Percpu

 CPU 1 Percpu

…………

 CPU n Percpu

Overhaul of Vector Allocation

 2. Refactor the vector allocation mechanism

Use the matrix for Legacy vector

24 Copyright 2018 FUJITSU LIMITED

0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

 system bitmap

 Global

available

 Global Counters

allocated system

 Percpu

 allocated bitmap

 managed bitmap

available

 Local Counters

allocated managed

 CPU 0 Percpu

 CPU 1 Percpu

…………

 CPU n Percpu

Overhaul of Vector Allocation

 2. Refactor the vector allocation mechanism

Use the matrix for Normal vector

25 Copyright 2018 FUJITSU LIMITED

0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

 system bitmap

 Global

available

 Global Counters

allocated system

 Percpu

 allocated bitmap

 managed bitmap

available

 Local Counters

allocated managed

 CPU 0 Percpu

 CPU 1 Percpu

…………

 CPU n Percpu

Step 1

Step 2

Overhaul of Vector Allocation

 2. Refactor the vector allocation mechanism

Use the matrix for Managed vector

26 Copyright 2018 FUJITSU LIMITED

0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

 system bitmap

 Global

available

 Global Counters

allocated system

 Percpu

 allocated bitmap

 managed bitmap

available

 Local Counters

allocated managed

 CPU 0 Percpu

 CPU 1 Percpu

…………

 CPU n Percpu

Step 1

Step 2

Step 3

Overhaul of Vector Allocation

 3. Switch to reservation scheme

 Reserve a new system vector , just in case

27 Copyright 2018 FUJITSU LIMITED

3.1 When the interrupt is allocated and initialized:

Now

1. Update the reservation request counter

2. Assign the reserved vector for each interrupts

Previously

Assign a real vector for each interrupts

Reservation

wasteful

Overhaul of Vector Allocation

 3. Switch to reservation scheme

 Separate activation and startup

Assign the real vector

28 Copyright 2018 FUJITSU LIMITED

Activate

Startup

Activate

Startup

Continue…

Can fail

3.2 When the interrupt is requested:

Assign a real vector

 for normal interrupts

Assign a real vector

 for managed interrupts

Continue…

Vector Space

Saving

Fail ?

Overhaul of Vector Allocation

 Some Others:

 Change from Multi CPU targets to single interrupt targets.

 Remove priority level spreading

 Simplify hotplug vector accounting

 Equip with trace points and detailed

 debugfs information

 Can see the Vector Allocation by:

 cat /sys/kernel/debug/irq/irqs/$N

 cat /sys/kernel/debug/irq/domains/$N

29 Copyright 2018 FUJITSU LIMITED

Outline

 Basics of an interrupt

Overhaul of interrupt

APIC Initialization

Vector Allocation

Future work

30 Copyright 2018 FUJITSU LIMITED

What's next?

Future work

Kernel's notion of possible CPU count should be realistic

Once the kernel initialized:

 The vector allocation is a generic mechanism

 Can be used to other architectures

31 Copyright 2018 FUJITSU LIMITED

Make the possible CPU count realistic

32 Copyright 2018 FUJITSU LIMITED

Thank you !

