(o8,
FUJITSU

shaping tomorrow with you

Kernel Interrupt: A Major Overhaul

- APIC Initialization

&
- Vector Allocation

Dou Liyang douly.fnst@cn.fujitsu.com

June 20 2018

Outline

What's next?

(O]
FUJITSU

M Basics of an interrupt

B Overhaul of interrupt
® APIC Initialization
M Vector Allocation

M Future work

Copyright 2018 FUJITSU LIMITED

What is An Interrupt? FUJiTSU

H A hardware signal
M Emitted from a peripheral to a CPU

M Indicating that a device-specific condition has been satisfied

device CPU

From Marc Zyngier <marc.zyngier@arm.com>

2 Copyright 2018 FUJITSU LIMITED

Multiplexing Interrupts FUJITSU

B Having a single interrupt for the CPU is usually not enough
B Most systems have tens, hundreds of them

B An interrupt controller allows them to be multiplexed

B Very often architecture or platform specific

M |n old x86 machine, there was a PIC called 8259A

W a chip responsible for sequentially processing multiple interrupt requests from
multiple devices

M Called PIC Mode

device

PIC CPU

device

3 Copyright 2018 FUJITSU LIMITED

Multiplexing Interrupts in SMP System FUJITSU

B Only a CPU is usually not enough
B Most systems have tens, hundreds of CPUs
B An new interrupt controller should be used

B In x86 machine, there i1s an APIC

W Local APIC is located on each CPU core, handles the CPU-specific interrupt
configuration

W 1/O APIC distribute external interrupts from multiple devices to multiple CPU
cores

W Called Symmetric 1/O Mode

device Local APIC CPU

/0 APIC

device Local APIC CPU

4 Copyright 2018 FUJITSU LIMITED

More than wired interrupts: MSIs FUjiTSU

B Message Signaled Interrupts are as an alternative to line-based
Interrupts

W Trigger an interrupt by writing a value to a particular memory
® Allow the use of the same buses as the data

device CPU

device MSI Capabilities CPU

device CPU
o7

5 Copyright 2018 FUJITSU LIMITED

Handle an Interrupt FUJiTSU

B Preempt currenttask D @
M Pause execution of the current process.

B Execute interrupt handler @ ~ ®
W Search for the handler of the interrupt and transfer control

B Resume the task ®
M Return to execute the current process;

@
— CPU 2 Current Task
®
]
® Has an Interrupt

o)

— Interrupt Handler

6 Copyright 2018 FUJITSU LIMITED

How Does “Handle an Interrupt” Work? FUjfTsu

B APIC and Vector mechanism make it work Interrupt
1. Delivery the IRQ through the APIC l
2. CPU search the handler in IDT through the vector
3. Gettheirg_desc structure through the vector. 1 APIC
4. Use the irg_desc to get what the interrupt needs l
» device info
* interrupt controller info 2 vector
* IRQ action list info l
5. Execute the interrupt service routine (ISR) 3 Irq desc
P——
4 Device Chip Domain Action

7 Copyright 2018 FUJITSU LIMITED

Why “APIC and Vector ” Can Work? FUTSU

B Do many initialization and setup works when Linux boots up

W For the interrupt delivery
* Initialize 8259A

1
« Switch interrupt delivery mode ’C‘,}Z
- Initialize APIC l’f"q/{) Device CPU
L7/)
- Local APIC setup ‘0,
* 1/0 APIC setup
W For IDT table,
- Initialize the mapping of Vector and Handler Interrupt Normal
Context Context
M For each Interrupt, uoC“ﬁOﬂ
- Allocate an IRQ Vecto? A

- Allocate an irg_desc

: Interrupt handler
- Assign a vector

8 Copyright 2018 FUJITSU LIMITED

Outline

What's next?

(O]
FUJITSU

M Basics of an interrupt

B Overhaul of interrupt

BAPIC Initialization
M Vector Allocation

M Future work

Copyright 2018 FUJITSU LIMITED

Existing Problems FUjiTSU

B Interrupt in X86 Is a conglomerate of ancient bits and pieces

W Subject to 'modernization’ and features over the years
* Kdump

» CPU Hotplug/System hibernation
 Multi-queue devices

M It looks like a penguin full of band-aids
® Can work, but can’t see how it works easily.

10 Copyright 2018 FUJITSU LIMITED

Problems of APIC Initialization FUJITSU

M Horrible interrupt mode setup

W Setup the mode at random places
¥ Run the kernel with the potentially wrong mode

B Tangle the timer setup with interrupt initialization

11 Copyright 2018 FUJITSU LIMITED

Overhaul of APIC Initialization FUjiTSU

| CONFIG X86 64 |

CONFIG_X86_LOCAL_APIC

CONFIG_x86_10_APIC

CONFIG_SMP

CPU Capability

boot_cpu_has(X86_FEATURE_APIC)

MP table

smp_found_config y

ACP] table

acpi_lapic

acpi_ioapic

nr_ioapic

Command line options

disable_apic

skip_ioapic_setup

nolapic/noapic/ apic=

Kconfig B 1. Unify the APIC and interrupt mode setup

M Construct a Selector for the interrupt delivery mode

-/ ~ ﬁ[PIC Mode]

Selector [1/77/>— Virtual Wire ModeJ

Symmetric 1/O Mode
A 4 —{ J

See arch/x86/kernel/apic/apic.c apic_intr_mode_select()

12 Copyright 2018 FUJITSU LIMITED

Overhaul of APIC Initialization FUJITSU

B 1. Unify the APIC and interrupt mode setup
™ Provide a single function

IniIshed at once

[Init_bsp APIC() }

4)
native_smp_prepare_cpus() —V/% apic_intr_mode_init()
- J
4 ™
smp_init()
- y,

See arch/x86/kernel/apic/apic.c apic_intr_mode_init()

13 Copyright 2018 FUJITSU LIMITED

Overhaul of APIC Initialization FUJITSU

M 2. Disentangle the timer setup from the APIC initialization

m Refactor the delay logic during APIC initialization process.
« Either use TSC or a simple delay loop to make a rough delay estimate

[mdelay(10)]

m Split local APIC timer setup from the APIC setup

14 Copyright 2018 FUJITSU LIMITED

Overhaul of APIC Initialization FUjiTSU

M 3. Reorganize the interrupt initialization
W Set up the final interrupt delivery mode as soon as possible.

1) Set up the legacy timer(PIT/HPET) [x86_init.timers.timer_init() J

2) Set up APIC/IOAPIC [x86_init.irqs.intr_mode_init()]

3) TSC calibration [tsc._init()]

4) Local APIC timer setup
x86 _init.timers.setup_percpu_clockev()

15 Copyright 2018 FUJITSU LIMITED

Overhaul of APIC Initialization FUjiTSU

M 4. Some others
® Refactor some common APIC function
W Compatible with ACPI initialization
W Bypass the hypervisor, Such as KVM and Xen

B 5. Can check which mode the interrupt is by ‘dmesg’:

0.000000) Kernel command line: BOO TAGE=/vmiinuz-24.16.0 root=00ID=10T10326-c0723-

16 Copyright 2018 FUJITSU LIMITED

Outline

What's next?

(O]
FUJITSU

M Basics of an interrupt

B Overhaul of interrupt
® APIC Initialization

W \Vector Allocation

M Future work

17 Copyright 2018 FUJITSU LIMITED

Problems of Vector Allocation

® Horrible worst vector management mechanism
W Abuse the interrupt allocation for different type interrupts
m Serve all different use cases in one go
W Based on nested loops to search
W Cause vector space exhaustion
® Allocate vectors at the wrong time and on the wrong place

B Some dubious properties, causes high complexity
W Multi CPU affinities for an IRQ
M Priority level spreading

B |Lack of instrumentation

o)
FUJITSU

Can work?

m All of this is a black box which allows no insight into the actual vector usage

18

Copyright 2018 FUJITSU LIMITED

Overhaul of Vector Allocation FUjiTSU

M 1. Classify the types of vectors
H 2. Refactor the vector allocation mechanism
B 3. Switch to a reservation scheme

M 4. Some Others 3. Reservation Scheme
An Vector ID

Initilization % / @ \
Request IRQ
Eny functions Whicﬂ% I I
request an vector — Z 2. Vector Allocator
1. \Vector Classifier
IRQ enabled

IRQ startup

19 Copyright 2018 FUJITSU LIMITED

Overhaul of Vector Allocation FUjiTSU

M 1. Classify the types of vectors Step 1%

B Each CPU has 256 vectors, But some are fixed
W 1. System Vector

* \ectors 0... 31
* \ector 128
* Vectors INVALIDATE_TLB VECTOR_START ... 255

W 2. Legacy Vector

* Vectors 0x30 ... Ox3f

W Others are allocated dynamically for normal and managed interrupts.

20 Copyright 2018 FUJITSU LIMITED

Overhaul of Vector Allocation FUjiTSU

M 1. Classify the types of vectors
W For external interrupts
W Depend on Interrupt Affinity(the set of CPUs that can handle this interrupt)

™ 3. Normal Vector W 4. Managed Vector
Normal Interrupt Managed Interrupt
- Affinity may be NULL - Affinity must have been setup

Atsetuptime | A subset of the online CPUs | - the possible CPUs may be included

User space - Affinity can be modified - Affinity is fixed
| - IRQcanbemovedtoany |- IRQ can move only in the affinity.
When migration gnline CPUs - But, can be shutdown and restarted.

- Affinity can be evenreset |- Affinity can’t be reset

21 Copyright 2018 FUJITSU LIMITED

Overhaul of Vector Allocation

M 2. Refactor the vector allocation mechanism
W Create a new bitmap matrix allocator——IRQ Matrix

o)
FUJITSU

Step 2 %

Global

system

system bitmap

Global Counters

available allocated

\ Allocator

CPU 0 Percpu Percpu

CPU 1 Percpu

allocated bitmap

managed bitma
CPU n Percpu J i

-

Local Counters

available allocated managed

1/

22

Copyright 2018 FUJITSU LIMITED

Overhaul of Vector Allocation

M 2. Refactor the vector allocation mechanism

W Use the matrix for System vector

o)
FUJITSU

Global

system bltmap

Global Counters

system available allocated

}

~

CPU 0 Percpu Percpu

CPU 1 Percpu

allocated bitmap

managed bitma
CPU n Percpu J i

-

Local Counters

available allocated managed

1/

23

Copyright 2018 FUJITSU LIMITED

Overhaul of Vector Allocation

H 2. Refactor the vector allocation mechanism

W Use the matrix for Legacy vector

o)
FUJITSU

Global

system bitmap

Global Counters

system available allocated

~

CPU 0 Percpu Percpu

CPU 1 Percpu

allocated bitmap

managed bitma
CPU n Percpu J i

-

Local Counters

available allocated managed

............ nnpRAk

1/

24

Copyright 2018 FUJITSU LIMITED

Overhaul of Vector Allocation

M 2. Refactor the vector allocation mechanism
M Use the matrix for Normal vector

o)
FUJITSU

Global

system bitmap

Global Counters

system available allocated

O[BIOON 1 1111

~

CPU 1 Pe Ste[; 1

CPU n Percpu

-

CPUO Percpu/ Percpu

allocated bitmap

managed bitmap

!!!!!!!Q

Local Counters

available allocated managed

Step 2

0/111

25

Copyright 2018 FUJITSU LIMITED

Overhaul of Vector Allocation

M 2. Refactor the vector allocation mechanism
W Use the matrix for Managed vector

o)
FUJITSU

Global

system bitmap

Global Counters

system available allocated

101111

~

CPU 0 Percpu Percpu

CPU 1 Percpu

Step 1
CPU n Percpu

-

Local Counters

available allocated managed
allocated bitmap

10111111101

managed bitmap

1|1 OO 1 1 1L

0
f

26

Copyright 2018 FUJITSU LIMITED

Overhaul of Vector Allocation FUjiTSU

W 3. Switch to reservation scheme Step 3 7

B Reserve a new system vector , just in case

3.1 When the interrupt is allocated and initialized:

Y

astefu

Previously

1. Update the reservation request counter

Assign a real vector for each interrupts
2. Assign the reserved vector for each interrupts

27 Copyright 2018 FUJITSU LIMITED

Overhaul of Vector Allocation FUjiTSU

M 3. Switch to reservation scheme

W Separate activation and startup
W Assign the real vector

3.2 When the interrupt is requested:

Activate
— Assign a real vector

for normal interrupts

Activate Fail ? Can fail l

Startup
Assign a real vector

for managed interrupts

Startup

Q)

Continue... l

—> Continue...

28 Copyright 2018 FUJITSU LIMITED

Overhaul of Vector Allocation FUjiTSU

B Some Others:

Change from Multi CPU targets to single interrupt targets.
Remove priority level spreading
Simplify hotplug vector accounting
Equip with trace points and detailed
debugfs information

ys/kernel/debug/irq/domains/*

B Can see the Vector Allocation by: |

cat /sys/kernel/debug/irg/irqs/$N
cat /sys/kernel/debug/irg/domains/$N §8

29 Copyright 2018 FUJITSU LIMITED

Outline FUJITSU

M Basics of an interrupt

B Overhaul of interrupt

Wh atlS neXt? ® APIC Initialization

M Vector Allocation

M Future work

30 Copyright 2018 FUJITSU LIMITED

Future work FUJITSU

B Kernel's notion of possible CPU count should be realistic
W Once the kernel initialized:

[I\/Iake the possible CPU count realistic}

B The vector allocation Is a generic mechanism
M Can be used to other architectures

31 Copyright 2018 FUJITSU LIMITED

o)
FUJITSU

Thank you !

32 Copyright 2018 FUJITSU LIMITED

