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What's next? 



What is An Interrupt? 

 

A hardware signal 

 

 Emitted from a peripheral to a CPU 

 

 Indicating that a device-specific condition has been satisfied 
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device CPU 

From Marc Zyngier <marc.zyngier@arm.com>  



Multiplexing Interrupts 

Having a single interrupt for the CPU is usually not enough 

Most systems have tens, hundreds of them 

 An interrupt controller allows them to be multiplexed 

Very often architecture or platform specific 

 In old x86 machine, there was a PIC called 8259A 

 a chip responsible for sequentially processing multiple interrupt requests from 

multiple devices 

 Called PIC Mode 
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Multiplexing Interrupts in SMP System 
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Local APIC 

Only a CPU is usually not enough 

Most systems have tens, hundreds of CPUs 

An new interrupt controller should be used 

 In x86 machine, there is an APIC 

 Local APIC is located on each CPU core, handles the CPU-specific interrupt 

configuration  

 I/O APIC distribute external interrupts from multiple devices to multiple CPU 

cores 

 Called Symmetric I/O Mode 

 

 



More than wired interrupts: MSIs 
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Message Signaled Interrupts are as an alternative to line-based 

interrupts 

 Trigger an interrupt by writing a value to a particular memory 

Allow the use of the same buses as the data 

 

 
CPU   device 

MSI Capabilities device 

device 
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CPU   



Handle an Interrupt 

 Preempt current task    

 Pause execution of the current process. 

 Execute interrupt handler   

 Search for the handler of the interrupt and transfer control 

 Resume the task 

 Return to execute the current process; 
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How Does “Handle an Interrupt” Work? 

 APIC and Vector mechanism make it work 

1. Delivery the IRQ through the APIC 

2. CPU search the handler in IDT through the vector 

3. Get the irq_desc  structure through the vector. 

4. Use the irq_desc to get what the interrupt needs 

• device info 

• interrupt controller  info 

• IRQ action list info 

5.  Execute the interrupt service routine (ISR) 
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Why “APIC and Vector ” Can Work? 

  Do many initialization and setup works when Linux boots up 
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 For the interrupt delivery 

• Initialize 8259A 

• Switch interrupt delivery mode 

• Initialize APIC 

• Local APIC setup 

• I/O APIC setup 

 

 For IDT table,  

• Initialize the mapping of Vector and Handler 

 

 For each  Interrupt,  

• Allocate an IRQ 

• Allocate an irq_desc  

• Assign a vector  

 

 

 

 

Device CPU 

Interrupt 

Context 

Normal 

Context 

Interrupt handler 
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What's next? 



Existing Problems 
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 Interrupt in x86 is a conglomerate of ancient bits and pieces 

  Subject to 'modernization' and features over the years 

• Kdump 

• CPU Hotplug/System hibernation 

• Multi-queue devices 

 

 

 It looks like a penguin full of band-aids 

 Can work, but can’t see how it works easily. 



Problems of APIC Initialization 

Horrible interrupt mode setup 

 Setup the mode at random places 

  Run the kernel with the potentially wrong mode 

 

 Tangle the timer setup with interrupt initialization 

11 Copyright 2018 FUJITSU LIMITED 

P
IC

 M
o

d
e 

Virtual Wire Mode 
Symmetric I/O Mode 

Timer 



Overhaul of APIC Initialization 

 1. Unify the APIC and interrupt mode setup 

 Construct a selector for the interrupt delivery mode 
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acpi_lapic 

acpi_ioapic 

nr_ioapic 

ACPI table 

disable_apic 

skip_ioapic_setup 

Command line options 

nolapic/noapic/ apic= 

 boot_cpu_has(X86_FEATURE_APIC) 

CPU Capability 

 smp_found_config 

MP table 

CONFIG_X86_64 

CONFIG_X86_LOCAL_APIC 

CONFIG_x86_IO_APIC 

CONFIG_SMP 

Kconfig 

Selector 

PIC Mode 

Virtual Wire Mode 

Symmetric I/O Mode 

See arch/x86/kernel/apic/apic.c apic_intr_mode_select() 



Overhaul of APIC Initialization 

 1. Unify the APIC and interrupt mode setup 

 Provide a single function 
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init_bsp_APIC( ) 

native_smp_prepare_cpus( ) 

smp_init( ) 

apic_intr_mode_init( ) 

See arch/x86/kernel/apic/apic.c apic_intr_mode_init() 

Finished at once 



Overhaul of APIC Initialization 

 2. Disentangle the timer setup from the APIC initialization 

 Refactor the delay logic during APIC initialization process. 

• Either use TSC or a simple delay loop to make a rough delay estimate 

 

 

 

 

 

 

 

 

 

 Split local APIC timer setup from the APIC setup 
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400000000000/HZ TSC cycles 

40940000000000/HZ TSC cycles 

mdelay(10) 



Overhaul of APIC Initialization 

 3. Reorganize the interrupt initialization 

 Set up the final interrupt delivery mode as soon as possible. 
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 1) Set up the legacy timer(PIT/HPET) 
 

 

 

  2) Set up APIC/IOAPIC 

 

 

 

  3) TSC calibration 

 

 

 

  4) Local APIC timer setup 
 

x86_init.timers.timer_init( ) 

x86_init.irqs.intr_mode_init( ) 

tsc_init( ) 

x86_init.timers.setup_percpu_clockev() 



Overhaul of APIC Initialization 

 4. Some others 

 Refactor some common APIC function 

 Compatible with ACPI initialization 

 Bypass the hypervisor, Such as KVM and Xen 

 

 5. Can check which mode the interrupt is by ‘dmesg’:  
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What's next? 



Problems of Vector Allocation 

Horrible worst vector management mechanism 

 Abuse the interrupt allocation for different type interrupts 

 Serve all different use cases in one go 

 Based on nested loops to search 

 Cause vector space exhaustion 

Allocate vectors at the wrong time and on the wrong place 

 

 Some dubious properties, causes high complexity 

Multi CPU affinities for an IRQ 

 Priority level spreading 

 

 Lack of instrumentation 

All of this is a black box which allows no insight into the actual vector usage 
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Can work? 



Overhaul of Vector Allocation 

 1. Classify the types of vectors    

 2. Refactor the vector allocation mechanism 

 3. Switch to a reservation scheme 

 4. Some Others 
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1. Vector Classifier 
2. Vector  Allocator 

3. Reservation Scheme 

Initilization 

activation 

IRQ startup 

Request IRQ 

IRQ enabled 

An Vector ID 

Any functions which  

request an vector 



Overhaul of Vector Allocation 
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 1. Classify the types of vectors 

 Each CPU has 256 vectors, But some are fixed 

 1. System Vector 

*  Vectors   0 ...  31 

*  Vector  128  

*  Vectors INVALIDATE_TLB_VECTOR_START ... 255 

Others are allocated dynamically for normal and managed  interrupts. 

Classifier 

 2. Legacy Vector 

*  Vectors   0x30  ...  0x3f 



Overhaul of Vector Allocation 
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 1. Classify the types of vectors 

 For external interrupts 

  Depend on Interrupt Affinity(the set of CPUs that can handle this interrupt) 

Managed Interrupt  Normal Interrupt  

User space - Affinity can  be modified - Affinity is fixed 

When migration 
- IRQ can be moved to any 

online CPUs   

- Affinity can be even reset 

- IRQ can move only in the affinity.  

- But, can be shutdown and restarted. 

- Affinity can’t be reset  

At setup time 
- Affinity must have been setup 

- the possible CPUs may be included 

- Affinity may be NULL 

- A subset of the online CPUs  

 3. Normal Vector  4. Managed Vector 



Overhaul of Vector Allocation 

 2. Refactor the vector allocation mechanism 

 Create a new bitmap matrix allocator——IRQ Matrix 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 system bitmap 

 Global 

available 

 Global Counters 

allocated system 

 Percpu 

 allocated bitmap 

 managed bitmap 

available 

 Local Counters 

allocated managed 

 CPU 0 Percpu  

 CPU 1 Percpu  

………… 

 CPU n Percpu  

Allocator 



Overhaul of Vector Allocation 

 2. Refactor the vector allocation mechanism 

Use the matrix for System vector 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Overhaul of Vector Allocation 

 2. Refactor the vector allocation mechanism 

Use the matrix for Legacy vector 
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Overhaul of Vector Allocation 

 2. Refactor the vector allocation mechanism 

Use the matrix for Normal vector 
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Overhaul of Vector Allocation 

 2. Refactor the vector allocation mechanism 

Use the matrix for Managed vector 
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Overhaul of Vector Allocation 

 3. Switch to reservation scheme 

  Reserve a new system vector , just in case 
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3.1 When the interrupt is allocated and initialized: 

Now 

1. Update the reservation request counter 

2. Assign the reserved vector for each interrupts 

Previously 

Assign a real vector for each interrupts  

Reservation 

wasteful 



Overhaul of Vector Allocation 

 3. Switch to reservation scheme 

 Separate activation and startup 

Assign the real vector  
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Activate  

Startup 

Activate  

Startup 

Continue… 

Can fail  

3.2 When the interrupt is requested: 

Assign a real vector 

 for normal interrupts  

Assign a real vector 

 for managed interrupts  

Continue… 

Vector Space 

Saving 

Fail ?  



Overhaul of Vector Allocation 

  Some Others: 

 Change from Multi CPU targets to single interrupt targets. 

 Remove priority level spreading 

 Simplify hotplug vector accounting 

 Equip with trace points and detailed  

    debugfs information 

 

 Can see the Vector Allocation by: 

 cat /sys/kernel/debug/irq/irqs/$N 

 cat /sys/kernel/debug/irq/domains/$N 
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What's next? 



Future work 

Kernel's notion of possible CPU count should be realistic 

Once the kernel initialized:  

 

 

 

 The vector allocation is a generic mechanism 

 Can be used to other architectures 
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Make the possible CPU count realistic 
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Thank you ! 


